How to Cite Octopus
Octopus is a free program, so you have the right to use, change, distribute, and to publish papers with it without citing anyone (for as long as you follow the GPL license). However, the developers of Octopus are also scientists that need citations to bump their CVs. Therefore, we would be very happy if you could cite one or more papers concerning Octopus in your work.
General Octopus papers
These are the main references about Octopus, you should cite at least one of these in an article that uses Octopus.
- N. Tancogne-Dejean, M. J. T. Oliveira, X. Andrade, H. Appel, C. H. Borca, G. Le Breton, F. Buchholz, A. Castro, S. Corni, A. A. Correa, U. De Giovannini, A. Delgado, F. G. Eich, J. Flick, G. Gil, A. Gomez, N. Helbig, H. Hübener, R. Jestädt, J. Jornet-Somoza, A. H. Larsen, I. V. Lebedeva, M. Lüders, M. A. L. Marques, S. T. Ohlmann, S. Pipolo, M. Rampp, C. A. Rozzi, D. A. Strubbe, S. A. Sato, C. Schäfer, I. Theophilou, A. Welden, A. Rubio, Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems, The Journal of Chemical Physics 152 124119 (2020);
- X. Andrade, D. A. Strubbe, U. De Giovannini, A. H. Larsen, M. J. T. Oliveira, J. Alberdi-Rodriguez, A. Varas, I. Theophilou, N. Helbig, M. Verstraete, L. Stella, F. Nogueira, A. Aspuru-Guzik, A. Castro, M. A. L. Marques, and A. Rubio, Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems, Physical Chemistry Chemical Physics 17 31371-31396 (2015);
- A. Castro, H. Appel, Micael Oliveira, C.A. Rozzi, X. Andrade, F. Lorenzen, M.A.L. Marques, E.K.U. Gross, and A. Rubio, octopus: a tool for the application of time-dependent density functional theory, Phys. Stat. Sol. B 243 2465-2488 (2006);
- M.A.L. Marques, Alberto Castro, George F. Bertsch, and Angel Rubio, octopus: a first-principles tool for excited electron-ion dynamics, Comput. Phys. Commun. 151 60-78 (2003);
Specific references about Octopus features
If you use specific functionalities there are other references that you should cite as well.
If you use the ‘‘’exciton wavefunction (TDTDM)’’’ part of the code:
- Jared R. Williams, Nicolas Tancogne-Dejean, Carsten A. Ullrich, Time-Resolved Exciton Wave Functions from Time-Dependent Density-Functional Theory, Journal of Chemical Theory and Computation 17 1795 (2021);
If you use the ‘‘‘magnon kick’’’ part of the code:
- Nicolas Tancogne-Dejean, Florian G.Eich, Angel Rubio, Time-Dependent Magnons from First Principles, Journal of Chemical Theory and Computation 16 1007 (2020);
If you use the ‘’’(TD)DFT+U’’’ part of the code:
- Tancogne-Dejean, Nicolas and Oliveira, Micael J. T. and Rubio, Angel, Self-consistent $\mathrm{DFT}+U$ method for real-space time-dependent density functional theory calculations, Phys. Rev. B 96 245133 (2017);
If you use the ‘‘‘DFT+U+V’’’ part of the code:
- Tancogne-Dejean, Nicolas and Rubio, Angel, Parameter-free hybridlike functional based on an extended Hubbard model: DFT + U + V, Phys. Rev. B 102 155117 (2020);
If you use the ‘‘‘parallel version’’’ of the code:
- X. Andrade, J. Alberdi-Rodriguez, D. A. Strubbe, M. J. T. Oliveira, F. Nogueira, A. Castro, J. Muguerza, A. Arruabarrena, S. G. Louie, A. Aspuru-Guzik, A. Rubio, and M. A. L. Marques, Time-dependent density-functional theory in massively parallel computer architectures: the octopus project, J. Phys.: Cond. Matt. 24 233202 (2012);
If you use the ‘‘’linear-response implementation’’’ you should cite:
- Xavier Andrade, Silvana Botti, Miguel Marques and Angel Rubio, Time-dependent density functional theory scheme for efficient calculations of dynamic (hyper)polarizabilities, J. Chem. Phys 126 184106 (2007);
If you use ‘‘‘GPUs’’’:
- X. Andrade and A. Aspuru-Guzik, Real-Space Density Functional Theory on Graphical Processing Units: Computational Approach and Comparison to Gaussian Basis Set Methods, J. Chem. Theo. Comput. (2013);
and if you use ‘‘‘more efficient Poisson solvers’’’:
- P. García-Risueño, J. Alberdi-Rodriguez, M. J. T. Oliveira, X. Andrade, M. Pippig, J. Muguerza, A. Arruabarrena, A. Rubio, A survey of the parallel performance and accuracy of Poisson solvers for electronic structure calculations, J. Comp. Chem 35 427–444 (2014);
There is also a paper describing the ‘‘‘propagation methods’’’ used in Octopus:
- A. Castro, M.A.L. Marques, and A. Rubio, Propagators for the time-dependent Kohn-Sham equations, J. Chem. Phys 121 3425-3433 (2004); ,
and a paper about libxc, the library used by octopus for the ‘‘’exchange-correlation functionals’’’,
- Miguel A. L. Marques, Micael J. T. Oliveira, and Tobias Burnus, Libxc: a library of exchange and correlation functionals for density functional theory, Comput. Phys. Commun., 183 2272-2281 (2012); OAI: arXiv:1203.1739
General TDDFT references
Finally, some general references on TDDFT, written by some of us:
- Fundamentals of time-dependent density functional theory M.A.L. Marques, N.T. Maitra, F. Nogueira, E.K.U. Gross, and A. Rubio (Eds.), Lecture Notes in Physics, Vol. 837, Springer, Berlin , 2012; isbn=978-3-642-23518-4
- Time-dependent density functional theory M.A.L. Marques, C. Ullrich, F. Nogueira, A. Rubio, K. Burke, and E.K.U. Gross (Eds.), Lecture Notes in Physics, Vol. 706, Springer, Berlin , 2006; isbn=978-3-540-35422-2
- Alberto Castro, M.A.L. Marques, Julio A. Alonso, and Angel Rubio, Optical properties of nanostructures from time-dependent density functional theory, J. Comp. Theoret. Nanoscience 1 231-255 (2004);
- M.A.L. Marques and E.K.U. Gross, Time-dependent density functional theory, Annu. Rev. Phys. Chem. 55 427-455 (2004);