Navigation :
Manual
Input Variables
-
Atomic Orbitals
-
Calculation Modes
-
ClassicalParticles
-
DFTBPlusInterface
-
Execution
-
Hamiltonian
-
Linear Response
-
Math
-
Maxwell
-
MaxwellStates
-
Mesh
-
Output
-
SCF
-
States
-
System
-
Time-Dependent
--
Absorbing Boundaries
--
PhotoElectronSpectrum
--
Propagation
--- ArnoldiOrthogonalization
--- InteractionTiming
--- IonsConstantVelocity
--- IonsTimeDependentDisplacements
--- MaxwellAbsorbingBoundaries
--- MaxwellBoundaryConditions
--- MaxwellTDETRSApprox
--- MaxwellTDOperatorMethod
--- MaxwellTDSCFThreshold
--- MoveIons
--- RecalculateGSDuringEvolution
--- TDDynamics
--- TDEnergyUpdateIter
--- TDExponentialMethod
--- TDExpOrder
--- TDIonicTimeScale
--- TDLanczosTol
--- TDMaxSteps
--- TDPhotonicTimeScale
--- TDPropagationTime
--- TDPropagator
--- TDSCFThreshold
--- TDStepsWithSelfConsistency
--- TDSystemPropagator
--- TDTimeStep
--- TemperatureFunction
--- Thermostat
--- ThermostatMass
--
Response
--
TD Output
-- MaxwellFunctions
-- MillerIndicesBasis
-- TDExternalFields
-- TDFreezeDFTUOccupations
-- TDFreezeHXC
-- TDFreezeOrbitals
-- TDFreezeU
-- TDFunctions
-- TDGlobalForce
-- TDScissor
-
Utilities
-
Alphabetic Index
Tutorials
Developers
Releases
TDLanczosTol
TDLanczosTol
Section Time-Dependent::Propagation
Type float
Default 1e-5
An internal tolerance variable for the Lanczos method. The smaller, the more
precisely the exponential is calculated, and also the bigger the dimension
of the Krylov subspace needed to perform the algorithm. One should carefully
make sure that this value is not too big, or else the evolution will be
wrong.
Source information
electrons/exponential.F90 : 150
call parse_variable ( namespace , 'TDLanczosTol' , CNST ( 1 e - 5 ), te % lanczos_tol )
Featured in chapters of the manual: