Navigation :
Manual
Input Variables
-
Atomic Orbitals
-
Calculation Modes
--
Geometry Optimization
--
Invert KS
--
Optimal Control
--- OCTCheckGradient
--- OCTClassicalTarget
--- OCTControlFunctionOmegaMax
--- OCTControlFunctionRepresentation
--- OCTControlFunctionType
--- OCTCurrentFunctional
--- OCTCurrentWeight
--- OCTDelta
--- OCTDirectStep
--- OCTDoubleCheck
--- OCTDumpIntermediate
--- OCTEps
--- OCTEta
--- OCTExcludedStates
--- OCTFilter
--- OCTFixFluenceTo
--- OCTFixInitialFluence
--- OCTHarmonicWeight
--- OCTInitialState
--- OCTInitialTransformStates
--- OCTInitialUserdefined
--- OCTLaserEnvelope
--- OCTLocalTarget
--- OCTMaxIter
--- OCTMomentumDerivatives
--- OCTNumberCheckPoints
--- OCTOptimizeHarmonicSpectrum
--- OCTPenalty
--- OCTPositionDerivatives
--- OCTRandomInitialGuess
--- OCTScheme
--- OCTSpatialCurrWeight
--- OCTStartIterCurrTg
--- OCTTargetDensity
--- OCTTargetDensityFromState
--- OCTTargetOperator
--- OCTTargetSpin
--- OCTTargetTransformStates
--- OCTTargetUserdefined
--- OCTTdTarget
--- OCTVelocityDerivatives
--- OCTVelocityTarget
--
Test
--
Unoccupied States
-- CalculationMode
-
ClassicalParticles
-
DFTBPlusInterface
-
Execution
-
Hamiltonian
-
Linear Response
-
Math
-
Maxwell
-
MaxwellStates
-
Mesh
-
Output
-
SCF
-
States
-
System
-
Time-Dependent
-
Utilities
-
Alphabetic Index
Tutorials
Developers
Releases
OCTHarmonicWeight
OCTHarmonicWeight
Section Calculation Modes::Optimal Control
Type string
Default “1”
(Experimental) If OCTTargetOperator = oct_tg_plateau , then the function to optimize is the integral of the
harmonic spectrum H ( ω ) H(\omega) H ( ω ) , weighted with a function f ( ω ) f(\omega) f ( ω )
that is defined as a string here. For example, if
you set OCTHarmonicWeight = "step(w-1)" , the function to optimize is
the integral of s t e p ( ω − 1 ) ∗ H ( ω ) step(\omega-1)*H(\omega) s t e p ( ω − 1 ) ∗ H ( ω ) , i.e.
∫ 1 ∞ H ( ω ) d ω \int_1^{\infty} H \left( \omega \right) d\omega ∫ 1 ∞ H ( ω ) d ω .
In practice, it is better if you also set an upper limit, e.g.
f ( ω ) = s t e p ( ω − 1 ) s t e p ( 2 − ω ) f(\omega) = step(\omega-1) step(2-\omega) f ( ω ) = s t e p ( ω − 1 ) s t e p ( 2 − ω ) .