Mesh implementation
The data structures:
The mesh descriptor is defined in
grid/mesh.F90
:
type, extends(basis_set_abst_t) :: mesh_t
! Components are public by default
class(box_t), pointer :: box !< simulation box of box_t
class(coordinate_system_t), pointer :: coord_system
type(index_t) :: idx
logical :: use_curvilinear
FLOAT :: spacing(MAX_DIM) !< the (constant) spacing between the points
!> When running serially, the local number of points is
!! equal to the global number of points.
!! Otherwise, the next two are different on each node.
integer :: np !< Local number of points in mesh
integer :: np_part !< Local points plus ghost points plus boundary points.
integer(i8) :: np_global !< Global number of points in mesh.
integer(i8) :: np_part_global !< Global number of inner points and boundary points.
!> will I run parallel in domains?
!! yes or no??
logical :: parallel_in_domains
type(mpi_grp_t) :: mpi_grp !< the mpi group describing parallelization in domains
type(par_vec_t) :: pv !< describes parallel vectors defined on the mesh.
type(partition_t) :: partition !< describes how the inner points are assigned to the domains
FLOAT, allocatable :: x(:,:) !< The (local) \b points
FLOAT :: volume_element !< The global volume element.
FLOAT, allocatable :: vol_pp(:) !< Element of volume for curvilinear coordinates.
type(mesh_cube_map_t) :: cube_map
logical :: masked_periodic_boundaries
character(len=256) :: periodic_boundary_mask
contains
procedure :: end => mesh_end
procedure :: init => mesh_init
procedure :: write_info => mesh_write_info
procedure :: dmesh_allreduce_0, zmesh_allreduce_0, imesh_allreduce_0
procedure :: dmesh_allreduce_1, zmesh_allreduce_1, imesh_allreduce_1
procedure :: dmesh_allreduce_2, zmesh_allreduce_2, imesh_allreduce_2
procedure :: dmesh_allreduce_3, zmesh_allreduce_3, imesh_allreduce_3
procedure :: dmesh_allreduce_4, zmesh_allreduce_4, imesh_allreduce_4
procedure :: dmesh_allreduce_5, zmesh_allreduce_5, imesh_allreduce_5
generic :: allreduce => dmesh_allreduce_0, zmesh_allreduce_0, imesh_allreduce_0
generic :: allreduce => dmesh_allreduce_1, zmesh_allreduce_1, imesh_allreduce_1
generic :: allreduce => dmesh_allreduce_2, zmesh_allreduce_2, imesh_allreduce_2
generic :: allreduce => dmesh_allreduce_3, zmesh_allreduce_3, imesh_allreduce_3
generic :: allreduce => dmesh_allreduce_4, zmesh_allreduce_4, imesh_allreduce_4
generic :: allreduce => dmesh_allreduce_5, zmesh_allreduce_5, imesh_allreduce_5
end type mesh_t
which uses the structure index_t
, containing the range and the mapping arrays:
type index_t
! Components are public by default
integer :: dim !< the dimension
integer :: nr(2, MAX_DIM) !< dimensions of the box where the points are contained
integer :: ll(MAX_DIM) !< literally nr(2,:) - nr(1,:) + 1 - 2*enlarge(:)
integer :: enlarge(MAX_DIM) !< number of points to add for boundary conditions
integer(i8) :: checksum
integer(i8), pointer :: grid_to_spatial_global(:) !< map: global grid index -> spatial index
integer(i8), pointer :: spatial_to_grid_global(:) !< inverse map: spatial index -> global grid index
integer :: type !< index type
integer :: bits !< bits per dimension for Hilbert index
integer :: offset(MAX_DIM) !< offset for getting the indices from the spatial index
integer :: stride(MAX_DIM)
integer :: window_grid_to_spatial !< handle to shared memory window for map
integer :: window_spatial_to_grid !< handle to shared memory window for inverse map
end type index_t
About lxyz and lxyz_inv maps:
The direct map:
lxyz(d, i) = R(d)i
where d denotes the dimension (i.e. x, y or z) and i is the index of the point.
The inverse map:
lxyz_inv( Rxi , Ryi , Rzi ) = i
The points defined by lxyz define a rectangular box of d dimensions. The real mesh vectors are related to Ri by multiplication with spacing and possibly distortion for curvilinear coordinates.
Note that this index array is the same in all parallel domains, and relates the integer coordinates to the global index of a given point.
type mesh_cube_map_t
! Components are public by default
integer(i8) :: nmap !< The number of maps
integer(i8), allocatable :: map(:, :)
type(accel_mem_t) :: map_buffer
end type mesh_cube_map_t
Note on packed states:
Note on curvilinear meshes:
The mesh::x(:,:)
array always contains a regular mesh, which gets ‘distorded’ to a curvilinear mesh by additional function calls.