Navigation :
Manual
Input Variables
-
Atomic Orbitals
-
Calculation Modes
-
ClassicalParticles
-
DFTBPlusInterface
-
Execution
-
Hamiltonian
--
DFT+U
--
PCM
--
Poisson
--
XC
---
DensityCorrection
--- DFTULevel
--- HFSingularity
--- HFSingularityNk
--- HFSingularityNsteps
--- HybridCAMParameters
--- Interaction1D
--- Interaction1DScreening
--- KLIPhotonCOC
--- libvdwxcDebug
--- libvdwxcMode
--- libvdwxcVDWFactor
--- OEPLevel
--- OEPMixing
--- OEPMixingScheme
--- OEPRemoveElectron
--- PhotonModes
--- PhotonXCEnergyMethod
--- PhotonXCEtaC
--- PhotonXCLambShift
--- PhotonXCLambShiftOmegaCutoff
--- PhotonXCLambShiftRenormalizeMass
--- PhotonXCLDAKappa
--- SCDMforPZSIC
--- SICCorrection
--- VDW_TS_cutoff
--- VDW_TS_damping
--- VDW_TS_sr
--- VDWCorrection
--- VDWD3Functional
--- VDWSelfConsistent
--- Xalpha
--- XCFunctional
--- XCKernel
--- XCKernelLRCAlpha
--- XCPhotonFunctional
--- XCPhotonIncludeHartree
--- XCUseGaugeIndependentKED
-- AdaptivelyCompressedExchange
-- CalculateDiamagneticCurrent
-- CalculateSelfInducedMagneticField
-- CurrentDensity
-- EnablePhotons
-- EwaldAlpha
-- FilterPotentials
-- ForceTotalEnforce
-- GaugeFieldDelay
-- GaugeFieldDynamics
-- GaugeFieldPropagate
-- GaugeVectorField
-- GyromagneticRatio
-- MagneticConstrain
-- MagneticConstrainStrength
-- MaxwellCouplingMode
-- MaxwellDipoleField
-- MultipolarExpansionTerms
-- NDSFATimeIntegrationStep
-- ParticleMass
-- PauliHamiltonianTerms
-- RashbaSpinOrbitCoupling
-- RelativisticCorrection
-- SOStrength
-- StaticElectricField
-- StaticMagneticField
-- StaticMagneticField2DGauge
-- TheoryLevel
-- TimeZero
-
Linear Response
-
Math
-
Maxwell
-
Mesh
-
Output
-
SCF
-
States
-
System
-
Time-Dependent
-
Utilities
-
Alphabetic Index
Tutorials
Developers
Releases
XCKernelLRCAlpha
XCKernelLRCAlpha
Section Hamiltonian::XC
Type float
Default 0.0
Set to a non-zero value to add a long-range correction for solids to the kernel.
This is the $\alpha$ parameter defined in S. Botti et al. , Phys. Rev. B
69, 155112 (2004). The $G = G^\prime = 0$ term $-\alpha/q^2$ is taken
into account by introducing an additional pole to the polarizability (see R. Stubner
et al. , Phys. Rev. B 70, 245119 (2004)). The rest of the terms are included by
multiplying the Hartree term by $1 - \alpha / 4 \pi$. The use of non-zero
$\alpha$ in combination with HamiltonianVariation = V_ext_only
corresponds to account of only the $G = G^\prime = 0$ term.
Applicable only to isotropic systems. (Experimental)
Source information
xc/xc.F90 : 309
call parse_variable ( namespace , 'XCKernelLRCAlpha' , M_ZERO , xcs % kernel_lrc_alpha )