Octopus
stress.F90
Go to the documentation of this file.
1!! Copyright (C) 2002-2016 M. Marques, A. Castro, A. Rubio, G. Bertsch
2!! Copyright (C) 2023 N. Tancogne-Dejean
3!!
4!! This program is free software; you can redistribute it and/or modify
5!! it under the terms of the GNU General Public License as published by
6!! the Free Software Foundation; either version 2, or (at your option)
7!! any later version.
8!!
9!! This program is distributed in the hope that it will be useful,
10!! but WITHOUT ANY WARRANTY; without even the implied warranty of
11!! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12!! GNU General Public License for more details.
13!!
14!! You should have received a copy of the GNU General Public License
15!! along with this program; if not, write to the Free Software
16!! Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
17!! 02110-1301, USA.
18!!
19
20#include "global.h"
21
22! ---------------------------------------------------------
25module stress_oct_m
28 use comm_oct_m
29 use debug_oct_m
33 use energy_oct_m
35 use epot_oct_m
36 use global_oct_m
37 use grid_oct_m
39 use io_oct_m
41 use ions_oct_m
43 use, intrinsic :: iso_fortran_env
47 use lda_u_oct_m
50 use math_oct_m
51 use mesh_oct_m
55 use mpi_oct_m
60 use ps_oct_m
62 use space_oct_m
72 use types_oct_m
73 use unit_oct_m
75 use v_ks_oct_m
77 use xc_oct_m
78 use xc_f03_lib_m
80 implicit none
81
82 private
83 public :: &
87
88contains
89
90 ! ---------------------------------------------------------
92 subroutine stress_calculate(namespace, gr, hm, st, ions, ks, ext_partners)
93 type(namespace_t), intent(in) :: namespace
94 type(grid_t), intent(inout) :: gr
95 type(hamiltonian_elec_t), intent(inout) :: hm
96 type(states_elec_t), target, intent(inout) :: st
97 type(ions_t), intent(inout) :: ions
98 type(v_ks_t), intent(in) :: ks
99 type(partner_list_t), intent(in) :: ext_partners
100
101 real(real64), allocatable :: rho_total(:)
102 real(real64) :: stress(3,3) ! stress tensor in Cartesian coordinate
103 real(real64) :: stress_kin(3,3), stress_Hartree(3,3), stress_xc(3,3), stress_xc_nlcc(3,3)
104 real(real64) :: stress_ps(3,3), stress_ps_nl(3,3), stress_ps_local(3,3), stress_ii(3,3)
105 real(real64) :: stress_hubbard(3,3)
106 integer :: ip
107 real(real64), allocatable :: vh(:)
108 real(real64), allocatable :: grad_vh(:,:)
109 real(real64) :: ehartree
110 real(real64), contiguous, pointer :: rho(:)
111
112 call profiling_in("STRESS_CALCULATE")
113 push_sub(stress_calculate)
114
115 if (st%wfs_type /= type_cmplx) then
116 write(message(1),'(a)') 'The stress tensors for real wavefunctions has not been implemented!'
117
118 if (hm%kpoints%full%npoints == 1) then
119 write(message(2),'(a)') 'For testing this feature, you can add ForceComplex=yes to the input file'
120 call messages_fatal(2, namespace=namespace)
121 end if
122
123 call messages_fatal(1, namespace=namespace)
124 end if
125
126 if (ions%space%periodic_dim == 1) then
127 call messages_not_implemented("Stress tensor for 1D periodic systems", namespace=namespace)
128 end if
129
130 if (.not. ions%space%is_periodic()) then
131 write(message(1),'(a)') 'The stress tensor cannot be computed for isolated systems'
132 call messages_fatal(1, namespace=namespace)
133 end if
134
135 if (ks%vdw%vdw_correction /= option__vdwcorrection__none .and. .not. any(ks%vdw%vdw_correction == d3_lib_options)) then
136 write(message(1),'(a)') 'The stress tensor is currently only implemented with DFT-D3 vdW correction'
137 call messages_fatal(1, namespace=namespace)
138 end if
139
140 if (hm%pcm%run_pcm) then
141 call messages_not_implemented('Stress tensor with PCM')
142 end if
143
144 if (allocated(hm%v_static)) then
145 call messages_not_implemented('Stress tensor with static electric fields')
146 end if
147
148 if (ks%has_photons) then
149 call messages_not_implemented('Stress tensor with photon modes')
150 end if
151
152 if (.not. hm%vnl%apply_projector_matrices) then
153 call messages_not_implemented('Stress tensor with relativistic Kleinman-Bylander pseudopotential')
154 end if
155
156 if (hm%ep%reltype == scalar_relativistic_zora .or. hm%ep%reltype == fully_relativistic_zora) then
157 call messages_not_implemented('Stress tensor with ZORA')
158 end if
159
160 ! Checks for the xc part of KS-DFT and GKS-DFT
161 if (ks%theory_level == kohn_sham_dft .or. ks%theory_level == generalized_kohn_sham_dft) then
162 if (.not. xc_is_energy_functional(hm%xc)) then
163 call messages_not_implemented("Stress tensor with xc functionals that are not energy functionals")
164 end if
165
166 if ( .not. in_family(hm%xc%family, [xc_family_lda, xc_family_gga])) then
167 write(message(1),'(a)') 'The stress tensor computation is currently only possible at the Kohn-Sham DFT level'
168 write(message(2),'(a)') 'with LDA and GGA functionals or for independent particles.'
169 call messages_fatal(2, namespace=namespace)
170 end if
171
172 if (in_family(hm%xc%family, [xc_family_gga]) .and. st%d%ispin == spinors) then
173 call messages_not_implemented("Stress tensor for GGAs with spinors", namespace=namespace)
174 end if
175 end if
176
177 if (hm%magnetic_constrain%level /= constrain_none) then
178 call messages_not_implemented("Stress tensor with MagneticConstrain /= constrain_none")
179 end if
180
181 stress(:,:) = m_zero
182
183 safe_allocate(rho_total(1:gr%np_part))
184 do ip = 1, gr%np
185 rho_total(ip) = sum(st%rho(ip, 1:st%d%nspin))
186 end do
188 ! As we rely on some of the full energy components, we need to recompute it first
189 ! TODO: We should restrict the components of the energy needed to be computed
190 call energy_calc_total(namespace, ions%space, hm, gr, st, ext_partners, iunit = -1, full = .true.)
191
192 ! In order to get the electrostatic part (Hartree and local pseudopotential part),
193 ! we need to get the Hartree potential and its gradient
194 safe_allocate(vh(1:gr%np_part))
195 safe_allocate(grad_vh(1:gr%np, 1:gr%der%dim))
196 if (ks%theory_level /= independent_particles) then
197 call lalg_copy(gr%np, hm%ks_pot%vhartree, vh)
198 else
199 if (hm%d%spin_channels > 1) then
200 safe_allocate(rho(1:gr%np_part))
201 call lalg_copy(gr%np, st%rho(:,1), rho)
202 call lalg_axpy(gr%np, m_one, st%rho(:,2), rho)
203 else
204 rho => st%rho(:,1)
205 end if
206 ! In the case of independent particles, we use the electron density without NLCC
207 call dpoisson_solve(hm%psolver, ions%namespace, vh, rho, all_nodes = .true.)
208 if (hm%d%spin_channels > 1) then
209 safe_deallocate_p(rho)
210 else
211 nullify(rho)
212 end if
213 end if
214 ehartree = hm%energy%hartree
215 ! We also compute the gradient here
216 call dderivatives_grad(gr%der, vh, grad_vh)
217
218 ! We now compute the various contributions to the stress tensor
219
220 ! Stress from kinetic energy of electrons
221 call stress_from_kinetic(gr, ions%space, hm, st, gr%symm, ions%latt%rcell_volume, stress_kin)
222 stress = stress + stress_kin
223
224 if (ks%theory_level == independent_particles) then
225 stress_hartree = m_zero
226 stress_xc = m_zero
227 stress_xc_nlcc = m_zero
228 else
229 call stress_from_hartree(gr, ions%space, ions%latt%rcell_volume, grad_vh, ehartree, stress_hartree)
230 stress = stress + stress_hartree
231
232 call stress_from_xc(hm%energy, ions%latt%rcell_volume, ions%space%periodic_dim, stress_xc)
233
234 ! Nonlinear core correction contribution
235 if (allocated(st%rho_core)) then
236 call stress_from_xc_nlcc(ions%latt%rcell_volume, gr, st, ions, hm%ks_pot%vxc, stress_xc_nlcc)
237 else
238 stress_xc_nlcc = m_zero
239 end if
240 ! Adds the beyond LDA contribution to the stress tensor
241 stress_xc = stress_xc + ks%stress_xc_gga / ions%latt%rcell_volume
242 stress = stress + stress_xc + stress_xc_nlcc
243 end if
244
245 call stress_from_pseudo_local(gr, hm, ions, rho_total, grad_vh, stress_ps_local)
246 stress_ps = stress_ps_local
247 stress = stress + stress_ps_local
248
249 safe_deallocate_a(vh)
250 safe_deallocate_a(grad_vh)
251
252 call stress_from_pseudo_nonloc(gr, st, hm, ions, stress_ps_nl)
253 stress_ps = stress_ps + stress_ps_nl
254 stress = stress + stress_ps_nl
255
256 call stress_from_hubbard(namespace, gr, st, hm, ions%space, ions%latt%rcell_volume, stress_hubbard)
257 stress = stress + stress_hubbard
258
259 call ion_interaction_stress(ions%ion_interaction, ions%space, ions%latt, ions%atom, ions%natoms, ions%pos, stress_ii)
260 stress = stress + stress_ii
261 ! Stress from kinetic energy of ion
262 ! Stress from ion-field interaction
263
264 ! Sign changed to fit conventional definition
265 stress = -stress
266 st%stress_tensors%kinetic = -stress_kin
267 st%stress_tensors%Hartree = -stress_hartree
268 st%stress_tensors%xc = -stress_xc
269 st%stress_tensors%xc_nlcc = -stress_xc_nlcc
270 st%stress_tensors%ps_local = -stress_ps_local
271 st%stress_tensors%ps_nl = -stress_ps_nl
272 st%stress_tensors%hubbard = -stress_hubbard
273 st%stress_tensors%ion_ion = -stress_ii
274
275 ! Stress contribution from vdW D3
276 if (ks%vdw%vdw_correction /= option__vdwcorrection__none) then
277 st%stress_tensors%vdw = hm%ep%vdw_stress
278 else
279 st%stress_tensors%vdw = m_zero
280 end if
281 stress = stress + st%stress_tensors%vdw
282
283 ! Symmetrize the stress tensor if we use k-point symmetries
284 if (hm%kpoints%use_symmetries) then
285 call dsymmetrize_tensor_cart(gr%symm, stress, use_non_symmorphic=.true.)
286 end if
287 ! We guarantee that the matrix is truely symmetric. There could be small numerical assymetries after symmetrization
288 call symmetrize_matrix(ions%space%periodic_dim, stress)
289
290 st%stress_tensors%total = stress
291
292 ! Some sumrule for validation
293 ! Sumrule is -3P_{kin}\Omega = 2 E_{kin}
294 st%stress_tensors%kinetic_sumrule = m_zero
295 ! Sumrule is -3P_{Hartree}\Omega = E_{Hartree}
296 st%stress_tensors%Hartree_sumrule = m_zero
297 if(ions%space%periodic_dim == 3) then
298 st%stress_tensors%kinetic_sumrule = (stress_kin(1,1) + stress_kin(2,2) + stress_kin(3,3))*ions%latt%rcell_volume
299 st%stress_tensors%kinetic_sumrule = st%stress_tensors%kinetic_sumrule - m_two * hm%energy%kinetic
300
301 st%stress_tensors%hartree_sumrule = (stress_hartree(1,1) + stress_hartree(2,2) + stress_hartree(3,3))*ions%latt%rcell_volume
302 st%stress_tensors%hartree_sumrule = st%stress_tensors%hartree_sumrule - hm%energy%hartree
303 end if
304
305 safe_deallocate_a(rho_total)
306
307 pop_sub(stress_calculate)
308 call profiling_out("STRESS_CALCULATE")
309 end subroutine stress_calculate
310
311 ! -------------------------------------------------------
326 subroutine stress_from_kinetic(gr, space, hm, st, symm, rcell_volume, stress_kin)
327 type(grid_t), intent(in) :: gr
328 class(space_t), intent(in) :: space
329 type(hamiltonian_elec_t), intent(in) :: hm
330 type(states_elec_t), intent(inout) :: st
331 type(symmetries_t), intent(in) :: symm
332 real(real64), intent(in) :: rcell_volume
333 real(real64), intent(out) :: stress_kin(3, 3)
334
335 integer :: ik, ist, idir, jdir, ib, minst, maxst
336 complex(real64), allocatable :: stress_l_block(:)
337 type(wfs_elec_t) :: psib, gpsib(space%dim)
338
339 call profiling_in("STRESS_FROM_KINETIC")
340 push_sub(stress_from_kinetic)
341
342 stress_kin(:,:) = m_zero
343
344 safe_allocate(stress_l_block(1:st%block_size))
345
346 do ik = st%d%kpt%start, st%d%kpt%end
347 if (st%kweights(ik) <= m_epsilon) cycle
348
349 do ib = st%group%block_start, st%group%block_end
350 minst = states_elec_block_min(st, ib)
351 maxst = states_elec_block_max(st, ib)
352
353 call hm%phase%copy_and_set_phase(gr, st%d%kpt, st%group%psib(ib, ik), psib)
354
355 ! calculate the gradient
356 call zderivatives_batch_grad(gr%der, psib, gpsib, set_bc=.false.)
357
358 ! Accumulate the result
359 do idir = 1, space%periodic_dim
360 do jdir = idir, space%periodic_dim
361 call zmesh_batch_dotp_vector(gr, gpsib(idir), gpsib(jdir), stress_l_block)
362
363 do ist = minst, maxst
364 stress_kin(idir,jdir) = stress_kin(idir,jdir) &
365 + st%kweights(ik) * st%occ(ist, ik) &
366 * real(stress_l_block(ist - minst + 1), real64)
367 end do
368 end do
369 end do
370
371 do idir = 1, space%dim
372 call gpsib(idir)%end()
373 end do
374 call psib%end()
375
376 end do
377 end do
378
379 if (st%parallel_in_states .or. st%d%kpt%parallel) then
380 call comm_allreduce(st%st_kpt_mpi_grp, stress_kin)
381 end if
382
383
384 ! Symmetrize the kinetic stress tensor
385 call upper_triangular_to_hermitian(space%periodic_dim, stress_kin)
386
387 ! Symmetrize the stress tensor if we use k-point symmetries
388 if (hm%kpoints%use_symmetries) then
389 call dsymmetrize_tensor_cart(symm, stress_kin, use_non_symmorphic=.true.)
390 end if
391
392 stress_kin = stress_kin / rcell_volume
393
394 call profiling_out("STRESS_FROM_KINETIC")
395 pop_sub(stress_from_kinetic)
396 end subroutine stress_from_kinetic
397
398 ! -------------------------------------------------------
415 subroutine stress_from_hartree(gr, space, volume, grad_vh, ehartree, stress_Hartree)
416 type(grid_t), intent(in) :: gr
417 class(space_t), intent(in) :: space
418 real(real64), intent(in) :: volume
419 real(real64), intent(in) :: grad_vh(:,:)
420 real(real64), intent(in) :: ehartree
421 real(real64), intent(out) :: stress_Hartree(3, 3)
422
423 integer :: idir, jdir
424
425 call profiling_in("STRESS_FROM_HARTREE")
426 push_sub(stress_from_hartree)
427
428 stress_hartree(:,:) = m_zero
429
430 do idir = 1, space%periodic_dim
431 do jdir = idir, space%periodic_dim
432 stress_hartree(idir, jdir) = -dmf_dotp(gr, grad_vh(:,idir), grad_vh(:, jdir))/m_four/m_pi
433 end do
434 stress_hartree(idir, idir) = stress_hartree(idir, idir) + ehartree
435 end do
436
437 call upper_triangular_to_hermitian(space%periodic_dim, stress_hartree)
438
439 stress_hartree = stress_hartree/volume
440
441 call profiling_out("STRESS_FROM_HARTREE")
442 pop_sub(stress_from_hartree)
443 end subroutine stress_from_hartree
444
445
446 ! -------------------------------------------------------
460 !
461 ! Note: We assume hm%energy%echange, correlation, and intnvxc
462 ! have already been calculated somewhere else.
463 subroutine stress_from_xc(energy, rcell_volume, periodic_dim, stress_xc)
464 type(energy_t), intent(in) :: energy
465 real(real64), intent(in) :: rcell_volume
466 integer, intent(in) :: periodic_dim
467 real(real64), intent(out) :: stress_xc(3, 3)
468
469 integer :: idir
470
471 call profiling_in("STRESS_FROM_XC")
472 push_sub(stress_from_xc)
473
474 stress_xc = m_zero
475 do idir = 1, periodic_dim
476 stress_xc(idir, idir) = - energy%exchange - energy%correlation + energy%intnvxc
477 end do
478 stress_xc(:,:) = stress_xc(:,:) / rcell_volume
479
480 call profiling_out("STRESS_FROM_XC")
481 pop_sub(stress_from_xc)
482 end subroutine stress_from_xc
483
484
485 ! -------------------------------------------------------
495 subroutine stress_from_xc_nlcc(rcell_volume, gr, st, ions, vxc, stress_xc_nlcc)
496 real(real64), intent(in) :: rcell_volume
497 type(grid_t), intent(in) :: gr
498 type(states_elec_t), intent(in) :: st
499 type(ions_t), intent(in) :: ions
500 real(real64), intent(in) :: vxc(:,:)
501 real(real64), intent(out) :: stress_xc_nlcc(3, 3)
502
503 integer :: idir, jdir, iat, ip
504 real(real64), allocatable :: nlcc(:), gvxc(:,:), nlcc_x(:,:), vxc_tot(:)
505
506 call profiling_in("STRESS_FROM_XC_NLCC")
507 push_sub(stress_from_xc_nlcc)
508
509 assert(allocated(st%rho_core))
511 stress_xc_nlcc = m_zero
512
513 safe_allocate(vxc_tot(1:gr%np_part))
514 safe_allocate(nlcc(1:gr%np))
515 safe_allocate(nlcc_x(1:gr%np, 1:gr%der%dim))
516
517 ! Sum over spin of the xc potential
518 call lalg_copy(gr%np, vxc(:, 1), vxc_tot)
519 if(st%d%nspin > 1) call lalg_axpy(gr%np, m_one, vxc(:, 2), vxc_tot)
520
521 ! We first accumulate the contribution from all the pseudo-ions
522 ! Here nlcc_x corresponds to
523 ! \sum_I \rho_{NLCC}^I(r-R_I) (r-R_I)
524 nlcc_x = m_zero
525 do iat = ions%atoms_dist%start, ions%atoms_dist%end
526 call species_get_nlcc(ions%atom(iat)%species, ions%space, ions%latt, &
527 ions%pos(:,iat), gr, nlcc)
528
529 do idir = 1, ions%space%periodic_dim
530 !$omp parallel do
531 do ip = 1, gr%np
532 nlcc_x(ip, idir) = nlcc_x(ip, idir) + (gr%x_t(ip, idir) - ions%pos(idir,iat)) * nlcc(ip)
533 end do
534 stress_xc_nlcc(idir, idir) = stress_xc_nlcc(idir, idir) + dmf_dotp(gr, nlcc, vxc_tot)
535 end do
536 end do
537 safe_deallocate_a(nlcc)
538
539 if (ions%atoms_dist%parallel) then
540 call comm_allreduce(ions%atoms_dist%mpi_grp, nlcc_x)
541 call comm_allreduce(ions%atoms_dist%mpi_grp, stress_xc_nlcc)
542 end if
543
544 safe_allocate(gvxc(1:gr%np, 1:gr%der%dim))
545 call dderivatives_grad(gr%der, vxc_tot, gvxc)
546
547 do idir = 1, ions%space%periodic_dim
548 do jdir = idir, ions%space%periodic_dim
549 stress_xc_nlcc(idir, jdir) = stress_xc_nlcc(idir, jdir) + dmf_dotp(gr, gvxc(:,idir), nlcc_x(:,jdir))
550 end do
551 end do
552 safe_deallocate_a(vxc_tot)
553 safe_deallocate_a(gvxc)
554 safe_deallocate_a(nlcc_x)
555
556 call upper_triangular_to_hermitian(ions%space%periodic_dim, stress_xc_nlcc)
557
558 stress_xc_nlcc(:,:) = stress_xc_nlcc(:,:) / rcell_volume
559
560 call profiling_out("STRESS_FROM_XC_NLCC")
561 pop_sub(stress_from_xc_nlcc)
562 end subroutine stress_from_xc_nlcc
563
564 ! -------------------------------------------------------
584 subroutine stress_from_pseudo_nonloc(gr, st, hm, ions, stress_ps_nl)
585 type(grid_t), target, intent(in) :: gr
586 type(states_elec_t), intent(inout) :: st
587 type(hamiltonian_elec_t), intent(in) :: hm
588 type(ions_t), intent(in) :: ions
589 real(real64), intent(out) :: stress_ps_nl(3, 3)
591 integer :: ik, ist, idir, jdir
592 integer :: ib, minst, maxst
593 type(wfs_elec_t) :: psib, rvnl_psib(3), gpsib(3)
594 complex(real64), allocatable :: stress_tmp(:)
595
596 call profiling_in("STRESS_FROM_PSEUDO_NL")
598
599 assert(st%wfs_type == type_cmplx)
600
601 safe_allocate(stress_tmp(1:st%block_size))
602
603 stress_ps_nl = m_zero
604
605 do ik = st%d%kpt%start, st%d%kpt%end
606
607 if (st%kweights(ik) <= m_epsilon) cycle
608
609 do ib = st%group%block_start, st%group%block_end
610 minst = states_elec_block_min(st, ib)
611 maxst = states_elec_block_max(st, ib)
612
613 call hm%phase%copy_and_set_phase(gr, st%d%kpt, st%group%psib(ib, ik), psib)
614
615 ! calculate the gradient
616 call zderivatives_batch_grad(gr%der, psib, gpsib, set_bc=.false.)
617
618
619 ! Get rV_NL |\psi> for all atoms
620 do idir = 1, gr%der%dim
621 call psib%copy_to(rvnl_psib(idir))
622 call batch_set_zero(rvnl_psib(idir))
623 end do
624 call hm%vnl%zr_vn_local(gr, st%d, gr%der%boundaries%spiral, psib, rvnl_psib)
625
626 do idir = 1, ions%space%periodic_dim
627 do jdir = idir, ions%space%periodic_dim
628 call zmesh_batch_dotp_vector(gr, gpsib(idir), rvnl_psib(jdir), stress_tmp)
629
630 do ist = minst, maxst
631 stress_ps_nl(idir, jdir) = stress_ps_nl(idir, jdir) &
632 + m_two * st%kweights(ik) * st%occ(ist, ik) * real(stress_tmp(ist-minst+1), real64)
633 end do
634
635 end do
636 end do
637
638 do idir = 1, gr%der%dim
639 call rvnl_psib(idir)%end()
640 call gpsib(idir)%end()
641 end do
642 call psib%end()
643 end do
644 end do
645
646 safe_deallocate_a(stress_tmp)
647
648 if (st%parallel_in_states .or. st%d%kpt%parallel) then
649 call comm_allreduce(st%st_kpt_mpi_grp, stress_ps_nl)
650 end if
651
652 ! Symmetrize the kinetic stress tensor
653 call upper_triangular_to_hermitian(ions%space%periodic_dim, stress_ps_nl)
654
655 ! Symmetrize the stress tensor if we use k-point symmetries
656 if (hm%kpoints%use_symmetries) then
657 call dsymmetrize_tensor_cart(gr%symm, stress_ps_nl, use_non_symmorphic=.true.)
658 end if
659
660 ! Add the nonlocal energy
661 do idir = 1, ions%space%periodic_dim
662 stress_ps_nl(idir, idir) = stress_ps_nl(idir, idir) + hm%energy%extern_non_local
663 end do
664
665 stress_ps_nl = stress_ps_nl/ions%latt%rcell_volume
666
667 call profiling_out("STRESS_FROM_PSEUDO_NL")
669
670 end subroutine stress_from_pseudo_nonloc
671
672
673 ! -------------------------------------------------------
693 subroutine stress_from_pseudo_local(gr, hm, ions, rho_total, grad_vh, stress_ps_local)
694 type(grid_t), target, intent(in) :: gr
695 type(hamiltonian_elec_t), intent(in) :: hm
696 type(ions_t), intent(in) :: ions
697 real(real64), contiguous, intent(inout) :: rho_total(:)
698 real(real64), intent(in) :: grad_vh(:,:)
699 real(real64), intent(out) :: stress_ps_local(3, 3)
700
701
702 real(real64) :: stress_SR(3, 3), stress_LR(3, 3)
703 real(real64) :: energy_ps_SR, charge, zi
704 real(real64), allocatable :: vloc(:), rvloc(:,:), rho_local_lr(:), rho_lr(:)
705 real(real64), allocatable :: grad_rho(:,:), rho_lr_x(:,:), vlr(:), grad_vlr(:,:)
706 integer :: idir, jdir, iatom
707 type(ps_t), pointer :: spec_ps
708
709 call profiling_in("STRESS_FROM_PSEUDO_LOC")
711
712 ! calculate stress from short-range local pseudopotentials
713 stress_sr = m_zero
714
715 safe_allocate(vloc(1:gr%np))
716 vloc = m_zero
717 safe_allocate(rvloc(1:gr%np, 1:gr%der%dim))
718 rvloc = m_zero
719 do iatom = 1, ions%natoms
720 call epot_local_pseudopotential_sr(gr, ions, iatom, vloc, rvloc)
721 end do
722 safe_deallocate_a(vloc)
723
724 safe_allocate(grad_rho(1:gr%np,1:gr%der%dim))
725 call dderivatives_grad(gr%der, rho_total, grad_rho)
726
727 energy_ps_sr = hm%energy%extern_local
728 do idir = 1, ions%space%periodic_dim
729 do jdir = idir, ions%space%periodic_dim
730 stress_sr(idir, jdir) = stress_sr(idir, jdir) &
731 +dmf_dotp(gr, rvloc(:, jdir), grad_rho(:, idir))
732 end do
733 stress_sr(idir,idir) = stress_sr(idir,idir) + energy_ps_sr
734 end do
735
736 call upper_triangular_to_hermitian(ions%space%periodic_dim, stress_sr)
737
738 stress_sr = stress_sr/ions%latt%rcell_volume
739
740 safe_deallocate_a(rvloc)
741 safe_deallocate_a(grad_rho)
742
743
744 ! calculate stress from long-range local pseudopotentials
745 stress_lr = m_zero
746
747 ! We treat the long-range part of the local potential as the Hartree term
748 ! We first sum the long range densities from atoms
749 safe_allocate(rho_lr(1:gr%np_part))
750 safe_allocate(rho_lr_x(1:gr%np, 1:gr%der%dim))
751 rho_lr = m_zero
752 rho_lr_x = m_zero
753 safe_allocate(rho_local_lr(1:gr%np))
754 do iatom = ions%atoms_dist%start, ions%atoms_dist%end
755 assert(ions%atom(iatom)%species%is_ps())
756 call species_get_long_range_density(ions%atom(iatom)%species, ions%namespace, ions%space, ions%latt, &
757 ions%pos(:, iatom), gr, rho_local_lr, nlr_x=rho_lr_x)
758
759 call lalg_axpy(gr%np, m_one, rho_local_lr, rho_lr)
760 end do
761 safe_deallocate_a(rho_local_lr)
762
763 if (ions%atoms_dist%parallel) then
764 call comm_allreduce(ions%atoms_dist%mpi_grp, rho_lr)
765 call comm_allreduce(ions%atoms_dist%mpi_grp, rho_lr_x)
766 end if
767
768 do idir = 1, ions%space%periodic_dim
769 do jdir = idir, ions%space%periodic_dim
770 stress_lr(idir, jdir) = stress_lr(idir, jdir) + dmf_dotp(gr, rho_lr_x(:,jdir), grad_vh(:, idir))
771 end do
772 end do
773 safe_deallocate_a(rho_lr_x)
774
775 safe_allocate(vlr(1:gr%np_part))
776 call dpoisson_solve(hm%psolver, ions%namespace, vlr, rho_lr, all_nodes = .true.)
777 safe_deallocate_a(rho_lr)
778
779 safe_allocate(grad_vlr(1:gr%np, 1:gr%der%dim))
780 call dderivatives_grad(gr%der, vlr, grad_vlr)
781 safe_deallocate_a(vlr)
782
783 do idir = 1, ions%space%periodic_dim
784 do jdir = idir, ions%space%periodic_dim
785 stress_lr(idir, jdir) = stress_lr(idir, jdir) - dmf_dotp(gr, grad_vh(:,idir), grad_vlr(:, jdir))/m_two/m_pi
786 end do
787 end do
789 call upper_triangular_to_hermitian(ions%space%periodic_dim, stress_lr)
790
791 safe_deallocate_a(grad_vlr)
792
793 ! Contribution from G=0 component of the long-range part
794 !
795 if (ions%space%periodic_dim == 3) then
796 charge = m_zero
797 do iatom = 1, ions%natoms
798 charge = charge + ions%atom(iatom)%species%get_zval()
799 end do
800
801 do iatom = 1, ions%natoms
802 select type(spec => ions%atom(iatom)%species)
803 type is(pseudopotential_t)
804 zi = spec%get_zval()
805 spec_ps => spec%ps
806
807 do idir = 1, ions%space%periodic_dim
808 stress_lr(idir, idir) = stress_lr(idir, idir) &
809 + m_two*m_pi*spec_ps%sigma_erf**2*charge*zi /ions%latt%rcell_volume
810 end do
811 end select
812 end do
813 end if
814
815 stress_lr = stress_lr/ions%latt%rcell_volume
816
817 stress_ps_local = stress_sr + stress_lr
818
819 call profiling_out("STRESS_FROM_PSEUDO_LOC")
821
822 end subroutine stress_from_pseudo_local
823
824 ! -------------------------------------------------------
825 subroutine epot_local_pseudopotential_sr(mesh, ions, iatom, vpsl, rvpsl)
826 class(mesh_t), intent(in) :: mesh
827 type(ions_t), intent(in) :: ions
828 integer, intent(in) :: iatom
829 real(real64), intent(inout) :: vpsl(:)
830 real(real64), intent(inout) :: rvpsl(:,:)
831
832 integer :: ip
833 real(real64) :: radius, vl_ip
834 type(submesh_t) :: sphere
835 type(ps_t), pointer :: ps
836
838
839 if (.not. ions%atom(iatom)%species%is_ps()) then
841 return
842 endif
843
844 call profiling_in("EPOT_LOCAL_PS_SR")
845
846 select type(spec=>ions%atom(iatom)%species)
847 type is(pseudopotential_t)
848
849 ps => spec%ps
850
851 radius = ps%vl%x_threshold*1.05_real64
852
853 call submesh_init(sphere, ions%space, mesh, ions%latt, ions%pos(:, iatom), radius)
854
855 ! Cannot be written (correctly) as a vector expression since for periodic systems,
856 ! there can be values ip, jp such that sphere%map(ip) == sphere%map(jp).
857 do ip = 1, sphere%np
858 vl_ip = spline_eval(ps%vl, sphere%r(ip))
859 vpsl(sphere%map(ip)) = vpsl(sphere%map(ip)) + vl_ip
860 rvpsl(sphere%map(ip), 1:ions%space%periodic_dim) = rvpsl(sphere%map(ip), 1:ions%space%periodic_dim) &
861 + sphere%rel_x(1:ions%space%periodic_dim, ip) * vl_ip
862 end do
863
864 call submesh_end(sphere)
865
866 nullify(ps)
867
868 end select
869
870 call profiling_out("EPOT_LOCAL_PS_SR")
872 end subroutine epot_local_pseudopotential_sr
873
874
875 ! -------------------------------------------------------
890 subroutine stress_from_hubbard(namespace, gr, st, hm, space, rcell_volume, stress_hubbard)
891 type(namespace_t), intent(in) :: namespace
892 type(grid_t), target, intent(in) :: gr
893 type(states_elec_t), intent(inout) :: st
894 type(hamiltonian_elec_t), intent(in) :: hm
895 type(space_t), intent(in) :: space
896 real(real64), intent(in) :: rcell_volume
897 real(real64), intent(out) :: stress_hubbard(3, 3)
898
899 integer :: ik, ist, idir, jdir
900 integer :: ib, minst, maxst
901 type(wfs_elec_t) :: psib, rvu_psib(3), gpsib(3)
902 complex(real64), allocatable :: stress_tmp(:)
903
904 if (hm%lda_u%level == dft_u_none) then
905 stress_hubbard = m_zero
906 return
907 end if
908
909 push_sub_with_profile(stress_from_hubbard)
910
911 assert(st%wfs_type == type_cmplx)
912
913 safe_allocate(stress_tmp(1:st%block_size))
914
915 stress_hubbard = m_zero
916
917 do ik = st%d%kpt%start, st%d%kpt%end
918
919 if (st%kweights(ik) <= m_epsilon) cycle
921 do ib = st%group%block_start, st%group%block_end
922 minst = states_elec_block_min(st, ib)
923 maxst = states_elec_block_max(st, ib)
924
925 call hm%phase%copy_and_set_phase(gr, st%d%kpt, st%group%psib(ib, ik), psib)
926
927 ! calculate the gradient
928 call zderivatives_batch_grad(gr%der, psib, gpsib, set_bc=.false.)
929
930 ! Get rV_U |\psi> for all atoms
931 do idir = 1, gr%der%dim
932 call psib%copy_to(rvu_psib(idir))
933 call batch_set_zero(rvu_psib(idir))
934 end do
935
936 call zlda_u_rvu(hm%lda_u, gr, space, hm%d, namespace, psib, rvu_psib)
937
938 do idir = 1,3
939 do jdir = idir,3
940 call zmesh_batch_dotp_vector(gr, gpsib(idir), rvu_psib(jdir), stress_tmp)
941
942 do ist = minst, maxst
943 stress_hubbard(idir, jdir) = stress_hubbard(idir, jdir) &
944 + m_two * st%kweights(ik) * st%occ(ist, ik) * real(stress_tmp(ist-minst+1), real64)
945 end do
946
947 end do
948 end do
949
950 do idir = 1, gr%der%dim
951 call rvu_psib(idir)%end()
952 call gpsib(idir)%end()
953 end do
954 call psib%end()
955 end do
956 end do
957
958 safe_deallocate_a(stress_tmp)
959
960 if (st%parallel_in_states .or. st%d%kpt%parallel) then
961 call comm_allreduce(st%st_kpt_mpi_grp, stress_hubbard)
962 end if
963
964 ! Symmetrize the kinetic stress tensor
965 call upper_triangular_to_hermitian(gr%der%dim, stress_hubbard)
966
967 ! Symmetrize the stress tensor if we use k-point symmetries
968 if (hm%kpoints%use_symmetries) then
969 call dsymmetrize_tensor_cart(gr%symm, stress_hubbard)
970 end if
971
972 ! Add the Hubbard energy
973 do idir = 1,3
974 stress_hubbard(idir, idir) = stress_hubbard(idir, idir) + hm%energy%int_dft_u
975 end do
976
977 stress_hubbard = stress_hubbard/rcell_volume
978
979 pop_sub_with_profile(stress_from_hubbard)
980 end subroutine stress_from_hubbard
981
982
983 ! -------------------------------------------------------
984 subroutine output_stress(iunit, space_dim, stress_tensors, all_terms)
985 integer, intent(in) :: iunit
986 integer, intent(in) :: space_dim
987 type(stress_t), intent(in) :: stress_tensors
988 logical, optional, intent(in) :: all_terms
989
990 logical :: write_all_terms
991 character(len=16) :: stress_unit
992
993 write_all_terms = optional_default(all_terms, .true.)
994
995 write(stress_unit, '(4a,i1)') trim(units_abbrev(units_out%energy)), '/', &
996 trim(units_abbrev(units_out%length)), '^', space_dim
997
998 if (mpi_world%is_root()) then
999
1000 if (write_all_terms) then
1001 write(iunit, '(3a)') 'Kinetic stress tensor [', trim(stress_unit), '] ='
1002 call print_stress_tensor(iunit, space_dim, stress_tensors%kinetic)
1003 if (space_dim == 3) then
1004 write(iunit, '(a, es15.6, 3a)') 'Kinetic pressure sumrule violation: ', &
1005 units_from_atomic(units_out%energy, stress_tensors%kinetic_sumrule), &
1006 ' [', trim(units_abbrev(units_out%energy)), ']'
1007 write(iunit,*)
1008 end if
1009
1010
1011 write(iunit, '(3a)') 'Hartree stress tensor [', trim(stress_unit), '] ='
1012 call print_stress_tensor(iunit, space_dim, stress_tensors%Hartree)
1013 if (space_dim == 3) then
1014 write(iunit, '(a, es15.6, 3a)') 'Hartree pressure sumrule violation: ', &
1015 units_from_atomic(units_out%energy, stress_tensors%hartree_sumrule), &
1016 ' [', trim(units_abbrev(units_out%energy)), ']'
1017 write(iunit,*)
1018 end if
1019
1020 write(iunit, '(3a)') 'XC stress tensor [', trim(stress_unit), '] ='
1021 call print_stress_tensor(iunit, space_dim, stress_tensors%xc)
1022
1023 write(iunit, '(3a)') 'XC NLCC stress tensor [', trim(stress_unit), '] ='
1024 call print_stress_tensor(iunit, space_dim, stress_tensors%xc_nlcc)
1025
1026 write(iunit, '(3a)') 'Local pseudo. stress tensor [', trim(stress_unit), '] ='
1027 call print_stress_tensor(iunit, space_dim, stress_tensors%ps_local)
1028
1029 write(iunit, '(3a)') 'Nonlocal pseudo. stress tensor [', trim(stress_unit), '] ='
1030 call print_stress_tensor(iunit, space_dim, stress_tensors%ps_nl)
1031
1032 write(iunit, '(3a)') 'Ion-ion stress tensor [', trim(stress_unit), '] ='
1033 call print_stress_tensor(iunit, space_dim, stress_tensors%ion_ion)
1034
1035 write(iunit, '(3a)') 'vdW stress tensor [', trim(stress_unit), '] ='
1036 call print_stress_tensor(iunit, space_dim, stress_tensors%vdw)
1037
1038 write(iunit, '(3a)') 'Hubbard stress tensor [', trim(stress_unit), '] ='
1039 call print_stress_tensor(iunit, space_dim, stress_tensors%hubbard)
1040 end if
1041
1042 write(iunit, '(3a)') 'Total stress tensor [', trim(stress_unit), '] ='
1043 call print_stress_tensor(iunit, space_dim, stress_tensors%total)
1044
1045 end if
1046 end subroutine output_stress
1047
1048
1049 subroutine output_pressure(iunit, space_dim, total_stress_tensor)
1050 integer, intent(in) :: iunit
1051 integer, intent(in) :: space_dim
1052 real(real64), intent(in) :: total_stress_tensor(3,3)
1053
1054 integer :: idim
1055 real(real64) :: pressure
1056 character(len=16) :: stress_unit
1057
1058 write(stress_unit, '(4a,i1)') trim(units_abbrev(units_out%energy)), '/', &
1059 trim(units_abbrev(units_out%length)), '^', space_dim
1060
1061 pressure = m_zero
1062 do idim = 1, space_dim
1063 pressure = pressure - total_stress_tensor(idim, idim) / real(space_dim, real64)
1064 end do
1065
1066 write(iunit,'(3a,es16.8)', advance="no") 'Pressure [', trim(stress_unit), '] = ', &
1067 units_from_atomic(units_out%energy/units_out%length**space_dim, pressure)
1068 if (space_dim == 3) then
1069 write(iunit,'(2x,a,f16.8)') 'Pressure [GPa] = ', units_from_atomic(unit_gpa, pressure)
1070 else
1071 write(iunit,*)
1072 end if
1073
1074 end subroutine output_pressure
1075
1076 subroutine print_stress_tensor(ounit, space_dim, tensor)
1077 integer, intent(in) :: ounit
1078 integer, intent(in) :: space_dim
1079 real(real64), intent(in) :: tensor(3,3)
1080
1081 real(real64) :: tensor_with_unit(3,3)
1082 integer :: idim, jdim
1083
1084 tensor_with_unit = units_from_atomic(units_out%energy/units_out%length**space_dim, tensor)
1085
1086 write(ounit,'(a9,2x)', advance="no")"T_{ij}"
1087 do jdim = 1, space_dim
1088 write(ounit,'(i18)', advance="no") jdim
1089 end do
1090 write(ounit,*)
1091 do idim = 1, space_dim
1092 write(ounit,'(i9,2x)', advance="no") idim
1093 do jdim = 1, space_dim
1094 write(ounit,'(es18.9)', advance="no") tensor_with_unit(idim, jdim)
1095 end do
1096 write(ounit,*)
1097 end do
1098 write(ounit,*)
1099
1100 end subroutine print_stress_tensor
1101
1102
1103end module stress_oct_m
1104
1105!! Local Variables:
1106!! mode: f90
1107!! coding: utf-8
1108!! End:
constant times a vector plus a vector
Definition: lalg_basic.F90:173
Copies a vector x, to a vector y.
Definition: lalg_basic.F90:188
This module implements common operations on batches of mesh functions.
Definition: batch_ops.F90:118
subroutine, public batch_set_zero(this, np, async)
fill all mesh functions of the batch with zero
Definition: batch_ops.F90:244
Module implementing boundary conditions in Octopus.
Definition: boundaries.F90:124
This module implements a calculator for the density and defines related functions.
Definition: density.F90:122
This module calculates the derivatives (gradients, Laplacians, etc.) of a function.
subroutine, public dderivatives_grad(der, ff, op_ff, ghost_update, set_bc, to_cartesian)
apply the gradient to a mesh function
subroutine, public zderivatives_batch_grad(der, ffb, opffb, ghost_update, set_bc, to_cartesian, factor)
apply the gradient to a batch of mesh functions
integer, parameter, public spinors
subroutine, public energy_calc_total(namespace, space, hm, gr, st, ext_partners, iunit, full)
This subroutine calculates the total energy of the system. Basically, it adds up the KS eigenvalues,...
integer, parameter, public scalar_relativistic_zora
Definition: epot.F90:168
integer, parameter, public fully_relativistic_zora
Definition: epot.F90:168
real(real64), parameter, public m_two
Definition: global.F90:193
real(real64), parameter, public m_zero
Definition: global.F90:191
real(real64), parameter, public m_four
Definition: global.F90:195
real(real64), parameter, public m_pi
some mathematical constants
Definition: global.F90:189
integer, parameter, public independent_particles
Theory level.
Definition: global.F90:237
integer, parameter, public generalized_kohn_sham_dft
Definition: global.F90:237
integer, parameter, public kohn_sham_dft
Definition: global.F90:237
real(real64), parameter, public m_epsilon
Definition: global.F90:207
real(real64), parameter, public m_one
Definition: global.F90:192
This module implements the underlying real-space grid.
Definition: grid.F90:119
This module defines classes and functions for interaction partners.
Definition: io.F90:116
subroutine, public ion_interaction_stress(this, space, latt, atom, natoms, pos, stress_ii)
Computes the contribution to the stress tensor the ion-ion energy.
A module to handle KS potential, without the external potential.
integer, parameter, public dft_u_none
Definition: lda_u.F90:203
subroutine, public zlda_u_rvu(this, mesh, space, d, namespace, psib, gpsib)
This routine computes .
Definition: lda_u.F90:5319
This modules implements the routines for doing constrain DFT for noncollinear magnetism.
integer, parameter, public constrain_none
This module is intended to contain "only mathematical" functions and procedures.
Definition: math.F90:117
This module defines functions over batches of mesh functions.
Definition: mesh_batch.F90:118
subroutine, public zmesh_batch_dotp_vector(mesh, aa, bb, dot, reduce, cproduct)
calculate the vector of dot-products of mesh functions between two batches
This module defines various routines, operating on mesh functions.
This module defines the meshes, which are used in Octopus.
Definition: mesh.F90:120
subroutine, public messages_not_implemented(feature, namespace)
Definition: messages.F90:1091
character(len=256), dimension(max_lines), public message
to be output by fatal, warning
Definition: messages.F90:162
subroutine, public messages_fatal(no_lines, only_root_writes, namespace)
Definition: messages.F90:410
type(mpi_grp_t), public mpi_world
Definition: mpi.F90:272
subroutine, public dpoisson_solve(this, namespace, pot, rho, all_nodes, kernel, reset)
Calculates the Poisson equation. Given the density returns the corresponding potential.
Definition: poisson.F90:875
subroutine, public profiling_out(label)
Increment out counter and sum up difference between entry and exit time.
Definition: profiling.F90:631
subroutine, public profiling_in(label, exclude)
Increment in counter and save entry time.
Definition: profiling.F90:554
Definition: ps.F90:116
subroutine, public species_get_long_range_density(species, namespace, space, latt, pos, mesh, rho, sphere_inout, nlr_x)
subroutine, public species_get_nlcc(species, space, latt, pos, mesh, rho_core, accumulate)
real(real64) function, public spline_eval(spl, x)
Definition: splines.F90:443
This module handles spin dimensions of the states and the k-point distribution.
integer pure function, public states_elec_block_max(st, ib)
return index of last state in block ib
integer pure function, public states_elec_block_min(st, ib)
return index of first state in block ib
This module implements the calculation of the stress tensor.
Definition: stress.F90:120
subroutine stress_from_hartree(gr, space, volume, grad_vh, ehartree, stress_Hartree)
Computes the contribution to the stress tensor from the Hartree energy.
Definition: stress.F90:511
subroutine stress_from_kinetic(gr, space, hm, st, symm, rcell_volume, stress_kin)
Computes the contribution to the stress tensor from the kinetic energy.
Definition: stress.F90:422
subroutine stress_from_pseudo_local(gr, hm, ions, rho_total, grad_vh, stress_ps_local)
Computes the contribution from the local part of the pseudopotential.
Definition: stress.F90:789
subroutine stress_from_xc(energy, rcell_volume, periodic_dim, stress_xc)
Computes the contribution to the stress tensor from the xc energy.
Definition: stress.F90:559
subroutine print_stress_tensor(ounit, space_dim, tensor)
Definition: stress.F90:1172
subroutine, public output_pressure(iunit, space_dim, total_stress_tensor)
Definition: stress.F90:1145
subroutine epot_local_pseudopotential_sr(mesh, ions, iatom, vpsl, rvpsl)
Definition: stress.F90:921
subroutine, public stress_calculate(namespace, gr, hm, st, ions, ks, ext_partners)
This computes the total stress on the lattice.
Definition: stress.F90:188
subroutine stress_from_hubbard(namespace, gr, st, hm, space, rcell_volume, stress_hubbard)
Computes the contribution to the stress tensor from the Hubbard energy.
Definition: stress.F90:986
subroutine stress_from_xc_nlcc(rcell_volume, gr, st, ions, vxc, stress_xc_nlcc)
Computes the NLCC contribution to the stress tensor from the xc energy.
Definition: stress.F90:591
subroutine stress_from_pseudo_nonloc(gr, st, hm, ions, stress_ps_nl)
Computes the contribution to the stress tensor from the nonlocal part of the pseudopotentials.
Definition: stress.F90:680
subroutine, public output_stress(iunit, space_dim, stress_tensors, all_terms)
Definition: stress.F90:1080
subroutine, public submesh_end(this)
Definition: submesh.F90:733
subroutine, public submesh_init(this, space, mesh, latt, center, rc)
Definition: submesh.F90:282
subroutine, public dsymmetrize_tensor_cart(symm, tensor, use_non_symmorphic)
Symmetric a rank-2 tensor defined in Cartesian space.
type(type_t), public type_cmplx
Definition: types.F90:136
brief This module defines the class unit_t which is used by the unit_systems_oct_m module.
Definition: unit.F90:134
character(len=20) pure function, public units_abbrev(this)
Definition: unit.F90:225
This module defines the unit system, used for input and output.
type(unit_system_t), public units_out
type(unit_t), public unit_gpa
For output pressure in GPa.
Definition: xc.F90:116
logical pure function, public xc_is_energy_functional(xcs)
Is one of the x or c functional is not an energy functional.
Definition: xc.F90:746
pure logical function, public in_family(family, xc_families)
Definition: xc.F90:621
A module that takes care of xc contribution from vdW interactions.
Definition: xc_vdw.F90:118
integer(int64), dimension(5), parameter, public d3_lib_options
VDWCORRECTION options that correspond to the DFT-D3 library.
Definition: xc_vdw.F90:171
Description of the grid, containing information on derivatives, stencil, and symmetries.
Definition: grid.F90:171
Describes mesh distribution to nodes.
Definition: mesh.F90:187
A type storing the information and data about a pseudopotential.
Definition: ps.F90:188
The states_elec_t class contains all electronic wave functions.
A submesh is a type of mesh, used for the projectors in the pseudopotentials It contains points on a ...
Definition: submesh.F90:177
batches of electronic states
Definition: wfs_elec.F90:141
int true(void)