Octopus
stress.F90
Go to the documentation of this file.
1!! Copyright (C) 2002-2016 M. Marques, A. Castro, A. Rubio, G. Bertsch
2!! Copyright (C) 2023 N. Tancogne-Dejean
3!!
4!! This program is free software; you can redistribute it and/or modify
5!! it under the terms of the GNU General Public License as published by
6!! the Free Software Foundation; either version 2, or (at your option)
7!! any later version.
8!!
9!! This program is distributed in the hope that it will be useful,
10!! but WITHOUT ANY WARRANTY; without even the implied warranty of
11!! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12!! GNU General Public License for more details.
13!!
14!! You should have received a copy of the GNU General Public License
15!! along with this program; if not, write to the Free Software
16!! Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
17!! 02110-1301, USA.
18!!
19
20#include "global.h"
21
22! ---------------------------------------------------------
25module stress_oct_m
28 use comm_oct_m
29 use debug_oct_m
33 use energy_oct_m
35 use epot_oct_m
36 use global_oct_m
37 use grid_oct_m
39 use io_oct_m
41 use ions_oct_m
43 use, intrinsic :: iso_fortran_env
46 use lda_u_oct_m
48 use math_oct_m
49 use mesh_oct_m
53 use mpi_oct_m
58 use ps_oct_m
60 use space_oct_m
70 use types_oct_m
71 use unit_oct_m
73 use v_ks_oct_m
75 use xc_oct_m
76 use xc_f03_lib_m
78 implicit none
79
80 private
81 public :: &
85
86contains
87
88 ! ---------------------------------------------------------
90 subroutine stress_calculate(namespace, gr, hm, st, ions, ks, ext_partners)
91 type(namespace_t), intent(in) :: namespace
92 type(grid_t), intent(inout) :: gr
93 type(hamiltonian_elec_t), intent(inout) :: hm
94 type(states_elec_t), target, intent(inout) :: st
95 type(ions_t), intent(inout) :: ions
96 type(v_ks_t), intent(in) :: ks
97 type(partner_list_t), intent(in) :: ext_partners
98
99 real(real64), allocatable :: rho_total(:)
100 real(real64) :: stress(3,3) ! stress tensor in Cartesian coordinate
101 real(real64) :: stress_kin(3,3), stress_Hartree(3,3), stress_xc(3,3), stress_xc_nlcc(3,3)
102 real(real64) :: stress_ps(3,3), stress_ps_nl(3,3), stress_ps_local(3,3), stress_ii(3,3)
103 real(real64) :: stress_hubbard(3,3)
104 integer :: ip
105 real(real64), allocatable :: vh(:)
106 real(real64), allocatable :: grad_vh(:,:)
107 real(real64) :: ehartree
108 real(real64), contiguous, pointer :: rho(:)
109
110 call profiling_in("STRESS_CALCULATE")
111 push_sub(stress_calculate)
112
113 if (st%wfs_type /= type_cmplx) then
114 write(message(1),'(a)') 'The stress tensors for real wavefunctions has not been implemented!'
115
116 if (hm%kpoints%full%npoints == 1) then
117 write(message(2),'(a)') 'For testing this feature, you can add ForceComplex=yes to the input file'
118 call messages_fatal(2, namespace=namespace)
119 end if
120
121 call messages_fatal(1, namespace=namespace)
122 end if
123
124 if (ions%space%periodic_dim == 1) then
125 call messages_not_implemented("Stress tensor for 1D periodic systems", namespace=namespace)
126 end if
127
128 if (ks%vdw%vdw_correction /= option__vdwcorrection__none .and. .not. any(ks%vdw%vdw_correction == d3_lib_options)) then
129 write(message(1),'(a)') 'The stress tensor is currently only implemented with DFT-D3 vdW correction'
130 call messages_fatal(1, namespace=namespace)
131 end if
132
133 if (hm%pcm%run_pcm) then
134 call messages_not_implemented('Stress tensor with PCM')
135 end if
136
137 if (allocated(hm%v_static)) then
138 call messages_not_implemented('Stress tensor with static electric fields')
139 end if
140
141 if (ks%has_photons) then
142 call messages_not_implemented('Stress tensor with photon modes')
143 end if
144
145 if (.not. hm%vnl%apply_projector_matrices) then
146 call messages_not_implemented('Stress tensor with relativistic Kleinman-Bylander pseudopotential')
147 end if
148
149 if (hm%ep%reltype == scalar_relativistic_zora .or. hm%ep%reltype == fully_relativistic_zora) then
150 call messages_not_implemented('Stress tensor with ZORA')
151 end if
152
153 ! Checks for the xc part of KS-DFT and GKS-DFT
154 if (ks%theory_level == kohn_sham_dft .or. ks%theory_level == generalized_kohn_sham_dft) then
155 if (.not. xc_is_energy_functional(hm%xc)) then
156 call messages_not_implemented("Stress tensor with xc functionals that are not energy functionals")
157 end if
158
159 if ( .not. in_family(hm%xc%family, [xc_family_lda, xc_family_gga])) then
160 write(message(1),'(a)') 'The stress tensor computation is currently only possible at the Kohn-Sham DFT level'
161 write(message(2),'(a)') 'with LDA and GGA functionals or for independent particles.'
162 call messages_fatal(2, namespace=namespace)
163 end if
164
165 if (in_family(hm%xc%family, [xc_family_gga]) .and. st%d%ispin == spinors) then
166 call messages_not_implemented("Stress tensor for GGAs with spinors", namespace=namespace)
167 end if
168 end if
169
170 stress(:,:) = m_zero
171
172 safe_allocate(rho_total(1:gr%np_part))
173 do ip = 1, gr%np
174 rho_total(ip) = sum(st%rho(ip, 1:st%d%nspin))
175 end do
176
177 ! As we rely on some of the full energy components, we need to recompute it first
178 ! TODO: We should restrict the components of the energy needed to be computed
179 call energy_calc_total(namespace, ions%space, hm, gr, st, ext_partners, iunit = 0, full = .true.)
180
181 ! In order to get the electrostatic part (Hartree and local pseudopotential part),
182 ! we need to get the Hartree potential and its gradient
183 safe_allocate(vh(1:gr%np_part))
184 safe_allocate(grad_vh(1:gr%np, 1:gr%der%dim))
185 if (ks%theory_level /= independent_particles) then
186 call lalg_copy(gr%np, hm%vhartree, vh)
187 else
188 if (poisson_solver_is_iterative(hm%psolver)) then
189 vh(1:gr%np) = m_zero
190 end if
191 if (hm%d%spin_channels > 1) then
192 safe_allocate(rho(1:gr%np_part))
193 call lalg_copy(gr%np, st%rho(:,1), rho)
194 call lalg_axpy(gr%np, m_one, st%rho(:,2), rho)
195 else
196 rho => st%rho(:,1)
197 end if
198 ! In the case of independent particles, we use the electron density without NLCC
199 call dpoisson_solve(hm%psolver, ions%namespace, vh, rho, all_nodes = .true.)
200 if (hm%d%spin_channels > 1) then
201 safe_deallocate_p(rho)
202 else
203 nullify(rho)
204 end if
205 end if
206 ehartree = hm%energy%hartree
207 ! We also compute the gradient here
208 call dderivatives_grad(gr%der, vh, grad_vh)
209
210 ! We now compute the various contributions to the stress tensor
211
212 ! Stress from kinetic energy of electrons
213 call stress_from_kinetic(gr, ions%space, hm, st, gr%symm, ions%latt%rcell_volume, stress_kin)
214 stress = stress + stress_kin
215
216 if (ks%theory_level == independent_particles) then
217 stress_hartree = m_zero
218 stress_xc = m_zero
219 else
220 call stress_from_hartree(gr, ions%space, ions%latt%rcell_volume, vh, grad_vh, ehartree, stress_hartree)
221 stress = stress + stress_hartree
222
223 call stress_from_xc(hm%energy, ions%latt%rcell_volume, ions%space%periodic_dim, stress_xc)
224
225 ! Nonlinear core correction contribution
226 if (allocated(st%rho_core)) then
227 call stress_from_xc_nlcc(ions%latt%rcell_volume, gr, st, ions, hm%vxc, stress_xc_nlcc)
228 stress_xc = stress_xc + stress_xc_nlcc
229 end if
230 ! Adds the beyond LDA contribution to the stress tensor
231 stress_xc = stress_xc + ks%stress_xc_gga / ions%latt%rcell_volume
232 stress = stress + stress_xc
233 end if
234
235 call stress_from_pseudo_local(gr, st, hm, ions, rho_total, vh, grad_vh, stress_ps_local)
236 stress_ps = stress_ps_local
237 stress = stress + stress_ps_local
238
239 safe_deallocate_a(vh)
240 safe_deallocate_a(grad_vh)
241
242 call stress_from_pseudo_nonloc(gr, st, hm, ions, stress_ps_nl)
243 stress_ps = stress_ps + stress_ps_nl
244 stress = stress + stress_ps_nl
245
246 call stress_from_hubbard(namespace, gr, st, hm, ions%space, ions%latt%rcell_volume, stress_hubbard)
247 stress = stress + stress_hubbard
248
249 call ion_interaction_stress(ions%ion_interaction, ions%space, ions%latt, ions%atom, ions%natoms, ions%pos, stress_ii)
250 stress = stress + stress_ii
251 ! Stress from kinetic energy of ion
252 ! Stress from ion-field interaction
253
254 ! Sign changed to fit conventional definition
255 stress = -stress
256
257 st%stress_tensors%kinetic = stress_kin
258 st%stress_tensors%Hartree = stress_hartree
259 st%stress_tensors%xc = stress_xc
260 st%stress_tensors%ps_local = stress_ps_local
261 st%stress_tensors%ps_nl = stress_ps_nl
262 st%stress_tensors%hubbard = stress_hubbard
263 st%stress_tensors%ion_ion = stress_ii
264
265 ! Stress contribution from vdW D3
266 if (ks%vdw%vdw_correction /= option__vdwcorrection__none) then
267 st%stress_tensors%vdw = hm%ep%vdw_stress
268 else
269 st%stress_tensors%vdw = m_zero
270 end if
271 stress = stress + st%stress_tensors%vdw
272
273 ! Symmetrize the stress tensor if we use k-point symmetries
274 if (hm%kpoints%use_symmetries) then
275 call dsymmetrize_tensor_cart(gr%symm, stress, use_non_symmorphic=.true.)
276 ! We guarantee that the matrix is truely symmetric. There could be small numerical assymetries after symmetrization
277 call dsymmetrize_matrix(ions%space%periodic_dim, stress)
278 end if
279
280 st%stress_tensors%total = stress
281
282 ! Some sumrule for validation
283 ! Sumrule is -3P_{kin}\Omega = 2 E_{kin}
284 st%stress_tensors%kinetic_sumrule = m_zero
285 ! Sumrule is -3P_{Hartree}\Omega = E_{Hartree}
286 st%stress_tensors%Hartree_sumrule = m_zero
287 if(ions%space%periodic_dim == 3) then
288 st%stress_tensors%kinetic_sumrule = (stress_kin(1,1) + stress_kin(2,2) + stress_kin(3,3))*ions%latt%rcell_volume
289 st%stress_tensors%kinetic_sumrule = st%stress_tensors%kinetic_sumrule - m_two * hm%energy%kinetic
290
291 st%stress_tensors%hartree_sumrule = (stress_hartree(1,1) + stress_hartree(2,2) + stress_hartree(3,3))*ions%latt%rcell_volume
292 st%stress_tensors%hartree_sumrule = st%stress_tensors%hartree_sumrule - hm%energy%hartree
293 end if
294
295 safe_deallocate_a(rho_total)
296
297 pop_sub(stress_calculate)
298 call profiling_out("STRESS_CALCULATE")
299 end subroutine stress_calculate
300
301 ! -------------------------------------------------------
316 subroutine stress_from_kinetic(gr, space, hm, st, symm, rcell_volume, stress_kin)
317 type(grid_t), intent(in) :: gr
318 class(space_t), intent(in) :: space
319 type(hamiltonian_elec_t), intent(in) :: hm
320 type(states_elec_t), intent(inout) :: st
321 type(symmetries_t), intent(in) :: symm
322 real(real64), intent(in) :: rcell_volume
323 real(real64), intent(out) :: stress_kin(3, 3)
324
325 integer :: ik, ist, idir, jdir, ib, minst, maxst
326 complex(real64), allocatable :: stress_l_block(:)
327 type(wfs_elec_t) :: psib, gpsib(space%dim)
328
329 call profiling_in("STRESS_FROM_KINETIC")
330 push_sub(stress_from_kinetic)
331
332 stress_kin(:,:) = m_zero
333
334 safe_allocate(stress_l_block(1:st%block_size))
335
336 do ik = st%d%kpt%start, st%d%kpt%end
337 if (st%kweights(ik) <= m_epsilon) cycle
338
339 do ib = st%group%block_start, st%group%block_end
340 minst = states_elec_block_min(st, ib)
341 maxst = states_elec_block_max(st, ib)
342
343 call hamiltonian_elec_copy_and_set_phase(hm, gr, st%d%kpt, st%group%psib(ib, ik), psib)
344
345 ! calculate the gradient
346 call zderivatives_batch_grad(gr%der, psib, gpsib, set_bc=.false.)
347
348 ! Accumulate the result
349 do idir = 1, space%periodic_dim
350 do jdir = idir, space%periodic_dim
351 call zmesh_batch_dotp_vector(gr, gpsib(idir), gpsib(jdir), stress_l_block)
352
353 do ist = minst, maxst
354 stress_kin(idir,jdir) = stress_kin(idir,jdir) &
355 + st%kweights(ik) * st%occ(ist, ik) &
356 * real(stress_l_block(ist - minst + 1), real64)
357 end do
358 end do
359 end do
360
361 do idir = 1, space%dim
362 call gpsib(idir)%end()
363 end do
364 call psib%end()
365
366 end do
367 end do
368
369 if (st%parallel_in_states .or. st%d%kpt%parallel) then
370 call comm_allreduce(st%st_kpt_mpi_grp, stress_kin)
371 end if
372
373
374 ! Symmetrize the kinetic stress tensor
375 call upper_triangular_to_hermitian(space%periodic_dim, stress_kin)
376
377 ! Symmetrize the stress tensor if we use k-point symmetries
378 if (hm%kpoints%use_symmetries) then
379 call dsymmetrize_tensor_cart(symm, stress_kin, use_non_symmorphic=.true.)
380 end if
381
382 stress_kin = stress_kin / rcell_volume
383
384 call profiling_out("STRESS_FROM_KINETIC")
385 pop_sub(stress_from_kinetic)
386 end subroutine stress_from_kinetic
387
388 ! -------------------------------------------------------
405 subroutine stress_from_hartree(gr, space, volume, vh, grad_vh, ehartree, stress_Hartree)
406 type(grid_t), intent(in) :: gr
407 class(space_t), intent(in) :: space
408 real(real64), intent(in) :: volume
409 real(real64), intent(in) :: vh(:)
410 real(real64), intent(in) :: grad_vh(:,:)
411 real(real64), intent(in) :: ehartree
412 real(real64), intent(out) :: stress_Hartree(3, 3)
413
414 integer :: idir, jdir
415
416 call profiling_in("STRESS_FROM_HARTREE")
417 push_sub(stress_from_hartree)
418
419 stress_hartree(:,:) = m_zero
420
421 do idir = 1, space%periodic_dim
422 do jdir = idir, space%periodic_dim
423 stress_hartree(idir, jdir) = -dmf_dotp(gr, grad_vh(:,idir), grad_vh(:, jdir))/m_four/m_pi
424 end do
425 stress_hartree(idir, idir) = stress_hartree(idir, idir) + ehartree
426 end do
427
428 call upper_triangular_to_hermitian(space%periodic_dim, stress_hartree)
429
430 stress_hartree = stress_hartree/volume
431
432 call profiling_out("STRESS_FROM_HARTREE")
433 pop_sub(stress_from_hartree)
434 end subroutine stress_from_hartree
435
436
437 ! -------------------------------------------------------
451 !
452 ! Note: We assume hm%energy%echange, correlation, and intnvxc
453 ! have already been calculated somewhere else.
454 subroutine stress_from_xc(energy, rcell_volume, periodic_dim, stress_xc)
455 type(energy_t), intent(in) :: energy
456 real(real64), intent(in) :: rcell_volume
457 integer, intent(in) :: periodic_dim
458 real(real64), intent(out) :: stress_xc(3, 3)
459
460 integer :: idir
461
462 call profiling_in("STRESS_FROM_XC")
463 push_sub(stress_from_xc)
464
465 stress_xc = m_zero
466 do idir = 1, periodic_dim
467 stress_xc(idir, idir) = - energy%exchange - energy%correlation + energy%intnvxc
468 end do
469 stress_xc(:,:) = stress_xc(:,:) / rcell_volume
470
471 call profiling_out("STRESS_FROM_XC")
472 pop_sub(stress_from_xc)
473 end subroutine stress_from_xc
474
475
476 ! -------------------------------------------------------
483 subroutine stress_from_xc_nlcc(rcell_volume, gr, st, ions, vxc, stress_xc_nlcc)
484 real(real64), intent(in) :: rcell_volume
485 type(grid_t), intent(in) :: gr
486 type(states_elec_t), intent(in) :: st
487 type(ions_t), intent(in) :: ions
488 real(real64), intent(in) :: vxc(:,:)
489 real(real64), intent(out) :: stress_xc_nlcc(3, 3)
490
491 integer :: idir, jdir, iat
492 real(real64), allocatable :: gnlcc(:,:), gnlcc_x(:,:,:), vxc_tot(:)
493
494 call profiling_in("STRESS_FROM_XC_NLCC")
495 push_sub(stress_from_xc_nlcc)
496
497 assert(allocated(st%rho_core))
499 stress_xc_nlcc = m_zero
500
501 ! We first accumulate the contribution from all the pseudo-ions
502 safe_allocate(gnlcc(gr%np, gr%der%dim))
503 safe_allocate(gnlcc_x(gr%np, gr%der%dim, gr%der%dim))
504 gnlcc_x = m_zero
505 do iat = ions%atoms_dist%start, ions%atoms_dist%end
506 assert(ions%atom(iat)%species%is_ps())
507 call species_get_nlcc_grad(ions%atom(iat)%species, ions%space, ions%latt, &
508 ions%pos(:,iat), gr, gnlcc, gnlcc_x)
509 end do
510 safe_deallocate_a(gnlcc)
511
512 if (ions%atoms_dist%parallel) then
513 call comm_allreduce(ions%atoms_dist%mpi_grp, gnlcc_x)
514 end if
515
516 ! Sum over spin of the xc potential
517 safe_allocate(vxc_tot(1:gr%np))
518 vxc_tot = vxc(1:gr%np, 1)
519 if(st%d%nspin > 1) vxc_tot = vxc_tot + vxc(1:gr%np, 2)
520
521 do idir = 1, ions%space%periodic_dim
522 do jdir = idir, ions%space%periodic_dim
523 stress_xc_nlcc(idir, jdir) = dmf_dotp(gr, vxc_tot, gnlcc_x(:,idir, jdir))
524 end do
525 end do
526 safe_deallocate_a(vxc_tot)
527 safe_deallocate_a(gnlcc_x)
528
529 call upper_triangular_to_hermitian(ions%space%periodic_dim, stress_xc_nlcc)
530
531 stress_xc_nlcc(:,:) = stress_xc_nlcc(:,:) / rcell_volume
532
533 call profiling_out("STRESS_FROM_XC_NLCC")
534 pop_sub(stress_from_xc_nlcc)
535 end subroutine stress_from_xc_nlcc
536
537 ! -------------------------------------------------------
556 subroutine stress_from_pseudo_nonloc(gr, st, hm, ions, stress_ps_nl)
557 type(grid_t), target, intent(in) :: gr
558 type(states_elec_t), intent(inout) :: st
559 type(hamiltonian_elec_t), intent(in) :: hm
560 type(ions_t), intent(in) :: ions
561 real(real64), intent(out) :: stress_ps_nl(3, 3)
562
563 integer :: ik, ist, idir, jdir
564 integer :: ib, minst, maxst
565 type(wfs_elec_t) :: psib, rvnl_psib(3), gpsib(3)
566 complex(real64), allocatable :: stress_tmp(:)
567
568 call profiling_in("STRESS_FROM_PSEUDO_NL")
570
571 assert(st%wfs_type == type_cmplx)
572
573 safe_allocate(stress_tmp(1:st%block_size))
574
575 stress_ps_nl = m_zero
577 do ik = st%d%kpt%start, st%d%kpt%end
578
579 if (st%kweights(ik) <= m_epsilon) cycle
580
581 do ib = st%group%block_start, st%group%block_end
582 minst = states_elec_block_min(st, ib)
583 maxst = states_elec_block_max(st, ib)
584
585 call hamiltonian_elec_copy_and_set_phase(hm, gr, st%d%kpt, st%group%psib(ib, ik), psib)
586
587 ! calculate the gradient
588 call zderivatives_batch_grad(gr%der, psib, gpsib, set_bc=.false.)
589
590
591 ! Get rV_NL |\psi> for all atoms
592 do idir = 1, gr%der%dim
593 call psib%copy_to(rvnl_psib(idir))
594 call batch_set_zero(rvnl_psib(idir))
595 end do
596 call hm%vnl%zr_vn_local(gr, st%d, gr%der%boundaries%spiral, psib, rvnl_psib)
597
598 do idir = 1, ions%space%periodic_dim
599 do jdir = idir, ions%space%periodic_dim
600 call zmesh_batch_dotp_vector(gr, gpsib(idir), rvnl_psib(jdir), stress_tmp)
601
602 do ist = minst, maxst
603 stress_ps_nl(idir, jdir) = stress_ps_nl(idir, jdir) &
604 + m_two * st%kweights(ik) * st%occ(ist, ik) * real(stress_tmp(ist-minst+1), real64)
605 end do
606
607 end do
608 end do
609
610 do idir = 1, gr%der%dim
611 call rvnl_psib(idir)%end()
612 call gpsib(idir)%end()
613 end do
614 call psib%end()
615 end do
616 end do
617
618 safe_deallocate_a(stress_tmp)
619
620 if (st%parallel_in_states .or. st%d%kpt%parallel) then
621 call comm_allreduce(st%st_kpt_mpi_grp, stress_ps_nl)
622 end if
623
624 ! Symmetrize the kinetic stress tensor
625 call upper_triangular_to_hermitian(ions%space%periodic_dim, stress_ps_nl)
626
627 ! Symmetrize the stress tensor if we use k-point symmetries
628 if (hm%kpoints%use_symmetries) then
629 call dsymmetrize_tensor_cart(gr%symm, stress_ps_nl, use_non_symmorphic=.true.)
630 end if
631
632 ! Add the nonlocal energy
633 do idir = 1, ions%space%periodic_dim
634 stress_ps_nl(idir, idir) = stress_ps_nl(idir, idir) + hm%energy%extern_non_local
635 end do
636
637 stress_ps_nl = stress_ps_nl/ions%latt%rcell_volume
638
639 call profiling_out("STRESS_FROM_PSEUDO_NL")
641
642 end subroutine stress_from_pseudo_nonloc
643
644
645 ! -------------------------------------------------------
662 subroutine stress_from_pseudo_local(gr, st, hm, ions, rho_total, vh, grad_vh, stress_ps_local)
663 type(grid_t), target, intent(in) :: gr
664 type(states_elec_t), intent(inout) :: st
665 type(hamiltonian_elec_t), intent(in) :: hm
666 type(ions_t), intent(in) :: ions
667 real(real64), contiguous, intent(inout) :: rho_total(:)
668 real(real64), intent(in) :: vh(:)
669 real(real64), intent(in) :: grad_vh(:,:)
670 real(real64), intent(out) :: stress_ps_local(3, 3)
671
672
673 real(real64) :: stress_SR(3, 3), stress_LR(3, 3)
674 real(real64) :: energy_ps_SR, charge, zi
675 real(real64), allocatable :: vloc(:), rvloc(:,:), rho_local_lr(:), rho_lr(:)
676 real(real64), allocatable :: grad_rho(:,:), rho_lr_x(:,:), vlr(:), grad_vlr(:,:)
677 integer :: idir, jdir, iatom
678 type(ps_t), pointer :: spec_ps
679
680 call profiling_in("STRESS_FROM_PSEUDO_LOC")
682
683 ! calculate stress from short-range local pseudopotentials
684 stress_sr = m_zero
685
686 safe_allocate(vloc(1:gr%np))
687 vloc = m_zero
688 safe_allocate(rvloc(1:gr%np, 1:gr%der%dim))
689 rvloc = m_zero
690 do iatom = 1, ions%natoms
691 call epot_local_pseudopotential_sr(gr, ions, iatom, vloc, rvloc)
692 end do
693 safe_deallocate_a(vloc)
694
695 safe_allocate(grad_rho(1:gr%np,1:gr%der%dim))
696 call dderivatives_grad(gr%der, rho_total, grad_rho)
697
698 energy_ps_sr = hm%energy%extern_local
699 do idir = 1, ions%space%periodic_dim
700 do jdir = idir, ions%space%periodic_dim
701 stress_sr(idir, jdir) = stress_sr(idir, jdir) &
702 +dmf_dotp(gr, rvloc(:, jdir), grad_rho(:, idir))
703 end do
704 stress_sr(idir,idir) = stress_sr(idir,idir) + energy_ps_sr
705 end do
706
707 call upper_triangular_to_hermitian(ions%space%periodic_dim, stress_sr)
708
709 stress_sr = stress_sr/ions%latt%rcell_volume
710
711 safe_deallocate_a(rvloc)
712 safe_deallocate_a(grad_rho)
713
714
715 ! calculate stress from long-range local pseudopotentials
716 stress_lr = m_zero
717
718 ! We treat the long-range part of the local potential as the Hartree term
719 ! We first sum the long range densities from atoms
720 safe_allocate(rho_lr(1:gr%np_part))
721 safe_allocate(rho_lr_x(1:gr%np, 1:gr%der%dim))
722 rho_lr = m_zero
723 rho_lr_x = m_zero
724 safe_allocate(rho_local_lr(1:gr%np))
725 do iatom = ions%atoms_dist%start, ions%atoms_dist%end
726 assert(ions%atom(iatom)%species%is_ps())
727 call species_get_long_range_density(ions%atom(iatom)%species, ions%namespace, ions%space, ions%latt, &
728 ions%pos(:, iatom), gr, rho_local_lr, nlr_x=rho_lr_x)
729
730 call lalg_axpy(gr%np, m_one, rho_local_lr, rho_lr)
731 end do
732 safe_deallocate_a(rho_local_lr)
733
734 if (ions%atoms_dist%parallel) then
735 call comm_allreduce(ions%atoms_dist%mpi_grp, rho_lr)
736 call comm_allreduce(ions%atoms_dist%mpi_grp, rho_lr_x)
737 end if
738
739 do idir = 1, ions%space%periodic_dim
740 do jdir = idir, ions%space%periodic_dim
741 stress_lr(idir, jdir) = stress_lr(idir, jdir) + dmf_dotp(gr, rho_lr_x(:,jdir), grad_vh(:, idir))
742 end do
743 end do
744 safe_deallocate_a(rho_lr_x)
745
746 safe_allocate(vlr(1:gr%np_part))
747 if (poisson_solver_is_iterative(hm%psolver)) then
748 ! vl has to be initialized before entering routine
749 ! and our best guess for the potential is zero
750 vlr(1:gr%np) = m_zero
751 end if
752 call dpoisson_solve(hm%psolver, ions%namespace, vlr, rho_lr, all_nodes = .true.)
753 safe_deallocate_a(rho_lr)
754
755 safe_allocate(grad_vlr(1:gr%np, 1:gr%der%dim))
756 call dderivatives_grad(gr%der, vlr, grad_vlr)
757 safe_deallocate_a(vlr)
758
759 do idir = 1, ions%space%periodic_dim
760 do jdir = idir, ions%space%periodic_dim
761 stress_lr(idir, jdir) = stress_lr(idir, jdir) - dmf_dotp(gr, grad_vh(:,idir), grad_vlr(:, jdir))/m_two/m_pi
762 end do
763 end do
764
765 call upper_triangular_to_hermitian(ions%space%periodic_dim, stress_lr)
766
767 safe_deallocate_a(grad_vlr)
768
769 ! Contribution from G=0 component of the long-range part
770 !
771 if (ions%space%periodic_dim == 3) then
772 charge = m_zero
773 do iatom = 1, ions%natoms
774 charge = charge + ions%atom(iatom)%species%get_zval()
775 end do
776
777 do iatom = 1, ions%natoms
778 select type(spec => ions%atom(iatom)%species)
779 type is(pseudopotential_t)
780 zi = spec%get_zval()
781 spec_ps => spec%ps
782
783 do idir = 1, ions%space%periodic_dim
784 stress_lr(idir, idir) = stress_lr(idir, idir) &
785 + m_two*m_pi*spec_ps%sigma_erf**2*charge*zi /ions%latt%rcell_volume
786 end do
787 end select
788 end do
789 end if
790
791 stress_lr = stress_lr/ions%latt%rcell_volume
792
793 stress_ps_local = stress_sr + stress_lr
794
795 call profiling_out("STRESS_FROM_PSEUDO_LOC")
797
798 end subroutine stress_from_pseudo_local
799
800 ! -------------------------------------------------------
801 subroutine epot_local_pseudopotential_sr(mesh, ions, iatom, vpsl, rvpsl)
802 class(mesh_t), intent(in) :: mesh
803 type(ions_t), intent(in) :: ions
804 integer, intent(in) :: iatom
805 real(real64), intent(inout) :: vpsl(:)
806 real(real64), intent(inout) :: rvpsl(:,:)
807
808 integer :: ip
809 real(real64) :: radius, vl_ip
810 type(submesh_t) :: sphere
811 type(ps_t), pointer :: ps
812
814
815 if (.not. ions%atom(iatom)%species%is_ps()) then
817 return
818 endif
819
820 call profiling_in("EPOT_LOCAL_PS_SR")
821
822 select type(spec=>ions%atom(iatom)%species)
823 type is(pseudopotential_t)
824
825 ps => spec%ps
826
827 radius = ps%vl%x_threshold*1.05_real64
828
829 call submesh_init(sphere, ions%space, mesh, ions%latt, ions%pos(:, iatom), radius)
830
831 ! Cannot be written (correctly) as a vector expression since for periodic systems,
832 ! there can be values ip, jp such that sphere%map(ip) == sphere%map(jp).
833 do ip = 1, sphere%np
834 vl_ip = spline_eval(ps%vl, sphere%r(ip))
835 vpsl(sphere%map(ip)) = vpsl(sphere%map(ip)) + vl_ip
836 rvpsl(sphere%map(ip), 1:ions%space%periodic_dim) = rvpsl(sphere%map(ip), 1:ions%space%periodic_dim) &
837 + sphere%rel_x(1:ions%space%periodic_dim, ip) * vl_ip
838 end do
839
840 call submesh_end(sphere)
841
842 nullify(ps)
843
844 end select
845
846 call profiling_out("EPOT_LOCAL_PS_SR")
848 end subroutine epot_local_pseudopotential_sr
849
850
851 ! -------------------------------------------------------
865 subroutine stress_from_hubbard(namespace, gr, st, hm, space, rcell_volume, stress_hubbard)
866 type(namespace_t), intent(in) :: namespace
867 type(grid_t), target, intent(in) :: gr
868 type(states_elec_t), intent(inout) :: st
869 type(hamiltonian_elec_t), intent(in) :: hm
870 type(space_t), intent(in) :: space
871 real(real64), intent(in) :: rcell_volume
872 real(real64), intent(out) :: stress_hubbard(3, 3)
873
874 integer :: ik, ist, idir, jdir
875 integer :: ib, minst, maxst
876 type(wfs_elec_t) :: psib, rvu_psib(3), gpsib(3)
877 complex(real64), allocatable :: stress_tmp(:)
878
879 if (hm%lda_u%level == dft_u_none) then
880 stress_hubbard = m_zero
881 return
882 end if
883
884 push_sub_with_profile(stress_from_hubbard)
885
886 assert(st%wfs_type == type_cmplx)
887
888 safe_allocate(stress_tmp(1:st%block_size))
889
890 stress_hubbard = m_zero
891
892 do ik = st%d%kpt%start, st%d%kpt%end
893
894 if (st%kweights(ik) <= m_epsilon) cycle
895
896 do ib = st%group%block_start, st%group%block_end
897 minst = states_elec_block_min(st, ib)
898 maxst = states_elec_block_max(st, ib)
899
900 call hamiltonian_elec_copy_and_set_phase(hm, gr, st%d%kpt, st%group%psib(ib, ik), psib)
901
902 ! calculate the gradient
903 call zderivatives_batch_grad(gr%der, psib, gpsib, set_bc=.false.)
904
905 ! Get rV_U |\psi> for all atoms
906 do idir = 1, gr%der%dim
907 call psib%copy_to(rvu_psib(idir))
908 call batch_set_zero(rvu_psib(idir))
909 end do
910
911 call zlda_u_rvu(hm%lda_u, gr, space, hm%d, namespace, psib, rvu_psib)
912
913 do idir = 1,3
914 do jdir = idir,3
915 call zmesh_batch_dotp_vector(gr, gpsib(idir), rvu_psib(jdir), stress_tmp)
916
917 do ist = minst, maxst
918 stress_hubbard(idir, jdir) = stress_hubbard(idir, jdir) &
919 + m_two * st%kweights(ik) * st%occ(ist, ik) * real(stress_tmp(ist-minst+1), real64)
920 end do
921
922 end do
923 end do
924
925 do idir = 1, gr%der%dim
926 call rvu_psib(idir)%end()
927 call gpsib(idir)%end()
928 end do
929 call psib%end()
930 end do
931 end do
932
933 safe_deallocate_a(stress_tmp)
934
935 if (st%parallel_in_states .or. st%d%kpt%parallel) then
936 call comm_allreduce(st%st_kpt_mpi_grp, stress_hubbard)
937 end if
938
939 ! Symmetrize the kinetic stress tensor
940 call upper_triangular_to_hermitian(gr%der%dim, stress_hubbard)
941
942 ! Symmetrize the stress tensor if we use k-point symmetries
943 if (hm%kpoints%use_symmetries) then
944 call dsymmetrize_tensor_cart(gr%symm, stress_hubbard)
945 end if
946
947 ! Add the Hubbard energy
948 do idir = 1,3
949 stress_hubbard(idir, idir) = stress_hubbard(idir, idir) + hm%energy%int_dft_u
950 end do
951
952 stress_hubbard = stress_hubbard/rcell_volume
953
954 pop_sub_with_profile(stress_from_hubbard)
955 end subroutine stress_from_hubbard
956
957
958 ! -------------------------------------------------------
959 subroutine output_stress(iunit, space_dim, stress_tensors, all_terms)
960 integer, intent(in) :: iunit
961 integer, intent(in) :: space_dim
962 type(stress_t), intent(in) :: stress_tensors
963 logical, optional, intent(in) :: all_terms
964
965 logical :: write_all_terms
966 character(len=16) :: stress_unit
967
968 write_all_terms = optional_default(all_terms, .true.)
969
970 write(stress_unit, '(4a,i1)') trim(units_abbrev(units_out%energy)), '/', &
971 trim(units_abbrev(units_out%length)), '^', space_dim
972
973 if (mpi_grp_is_root(mpi_world)) then
974
975 if (write_all_terms) then
976 write(iunit, '(3a)') 'Kinetic stress tensor [', trim(stress_unit), '] ='
977 call print_stress_tensor(iunit, space_dim, stress_tensors%kinetic)
978 if (space_dim == 3) then
979 write(iunit, '(a, es15.6, 3a)') 'Kinetic pressure sumrule violation: ', &
980 units_from_atomic(units_out%energy, stress_tensors%kinetic_sumrule), &
981 ' [', trim(units_abbrev(units_out%energy)), ']'
982 write(iunit,*)
983 end if
984
985
986 write(iunit, '(3a)') 'Hartree stress tensor [', trim(stress_unit), '] ='
987 call print_stress_tensor(iunit, space_dim, stress_tensors%Hartree)
988 if (space_dim == 3) then
989 write(iunit, '(a, es15.6, 3a)') 'Hartree pressure sumrule violation: ', &
990 units_from_atomic(units_out%energy, stress_tensors%hartree_sumrule), &
991 ' [', trim(units_abbrev(units_out%energy)), ']'
992 write(iunit,*)
993 end if
994
995 write(iunit, '(3a)') 'XC stress tensor [', trim(stress_unit), '] ='
996 call print_stress_tensor(iunit, space_dim, stress_tensors%xc)
997
998 write(iunit, '(3a)') 'Local pseudo. stress tensor [', trim(stress_unit), '] ='
999 call print_stress_tensor(iunit, space_dim, stress_tensors%ps_local)
1000
1001 write(iunit, '(3a)') 'Nonlocal pseudo. stress tensor [', trim(stress_unit), '] ='
1002 call print_stress_tensor(iunit, space_dim, stress_tensors%ps_nl)
1003
1004 write(iunit, '(3a)') 'Ion-ion stress tensor [', trim(stress_unit), '] ='
1005 call print_stress_tensor(iunit, space_dim, stress_tensors%ion_ion)
1006
1007 write(iunit, '(3a)') 'vdW stress tensor [', trim(stress_unit), '] ='
1008 call print_stress_tensor(iunit, space_dim, stress_tensors%vdw)
1009
1010 write(iunit, '(3a)') 'Hubbard stress tensor [', trim(stress_unit), '] ='
1011 call print_stress_tensor(iunit, space_dim, stress_tensors%hubbard)
1012 end if
1013
1014 write(iunit, '(3a)') 'Total stress tensor [', trim(stress_unit), '] ='
1015 call print_stress_tensor(iunit, space_dim, stress_tensors%total)
1016
1017 end if
1018 end subroutine output_stress
1019
1020
1021 subroutine output_pressure(iunit, space_dim, total_stress_tensor)
1022 integer, intent(in) :: iunit
1023 integer, intent(in) :: space_dim
1024 real(real64), intent(in) :: total_stress_tensor(3,3)
1025
1026 ! TODO(Alex). Issue 884. Move this to unit_system.F90
1027 real(real64), parameter :: au_to_GPa = 29421.02648438959_real64
1028
1029 integer :: idim
1030 real(real64) :: pressure = m_zero
1031 character(len=16) :: stress_unit
1032
1033 write(stress_unit, '(4a,i1)') trim(units_abbrev(units_out%energy)), '/', &
1034 trim(units_abbrev(units_out%length)), '^', space_dim
1035
1036 do idim = 1, space_dim
1037 pressure = pressure - total_stress_tensor(idim, idim) / real(space_dim, real64)
1038 end do
1039
1040 write(iunit,'(3a,es16.8)', advance="no") 'Pressure [', trim(stress_unit), '] = ', &
1041 units_from_atomic(units_out%energy/units_out%length**space_dim, pressure)
1042 if (space_dim == 3) then
1043 write(iunit,'(2x,a,f16.8)') 'Pressure [GPa] = ', pressure * au_to_gpa
1044 else
1045 write(iunit,*)
1046 end if
1047
1048 end subroutine output_pressure
1049
1050 subroutine print_stress_tensor(ounit, space_dim, tensor)
1051 integer, intent(in) :: ounit
1052 integer, intent(in) :: space_dim
1053 real(real64), intent(in) :: tensor(3,3)
1054
1055 real(real64) :: tensor_with_unit(3,3)
1056 integer :: idim, jdim
1057
1058 tensor_with_unit = units_from_atomic(units_out%energy/units_out%length**space_dim, tensor)
1059
1060 write(ounit,'(a9,2x)', advance="no")"T_{ij}"
1061 do jdim = 1, space_dim
1062 write(ounit,'(i18)', advance="no") jdim
1063 end do
1064 write(ounit,*)
1065 do idim = 1, space_dim
1066 write(ounit,'(i9,2x)', advance="no") idim
1067 do jdim = 1, space_dim
1068 write(ounit,'(es18.9)', advance="no") tensor_with_unit(idim, jdim)
1069 end do
1070 write(ounit,*)
1071 end do
1072 write(ounit,*)
1073
1074 end subroutine print_stress_tensor
1075
1076
1077end module stress_oct_m
1078
1079!! Local Variables:
1080!! mode: f90
1081!! coding: utf-8
1082!! End:
constant times a vector plus a vector
Definition: lalg_basic.F90:170
Copies a vector x, to a vector y.
Definition: lalg_basic.F90:185
This module implements common operations on batches of mesh functions.
Definition: batch_ops.F90:116
subroutine, public batch_set_zero(this, np, async)
fill all mesh functions of the batch with zero
Definition: batch_ops.F90:242
Module implementing boundary conditions in Octopus.
Definition: boundaries.F90:122
This module implements a calculator for the density and defines related functions.
Definition: density.F90:120
This module calculates the derivatives (gradients, Laplacians, etc.) of a function.
subroutine, public dderivatives_grad(der, ff, op_ff, ghost_update, set_bc, to_cartesian)
apply the gradient to a mesh function
subroutine, public zderivatives_batch_grad(der, ffb, opffb, ghost_update, set_bc, to_cartesian, metric, factor)
apply the gradient to a batch of mesh functions
integer, parameter, public spinors
subroutine, public energy_calc_total(namespace, space, hm, gr, st, ext_partners, iunit, full)
This subroutine calculates the total energy of the system. Basically, it adds up the KS eigenvalues,...
integer, parameter, public scalar_relativistic_zora
Definition: epot.F90:166
integer, parameter, public fully_relativistic_zora
Definition: epot.F90:166
real(real64), parameter, public m_two
Definition: global.F90:189
real(real64), parameter, public m_zero
Definition: global.F90:187
real(real64), parameter, public m_four
Definition: global.F90:191
real(real64), parameter, public m_pi
some mathematical constants
Definition: global.F90:185
real(real64), parameter, public m_epsilon
Definition: global.F90:203
real(real64), parameter, public m_one
Definition: global.F90:188
This module implements the underlying real-space grid.
Definition: grid.F90:117
integer, parameter, public generalized_kohn_sham_dft
subroutine, public hamiltonian_elec_copy_and_set_phase(hm, gr, kpt, psib, psib_with_phase)
Copy a batch to another batch and apply the Bloch phase to it.
integer, parameter, public independent_particles
integer, parameter, public kohn_sham_dft
This module defines classes and functions for interaction partners.
Definition: io.F90:114
subroutine, public ion_interaction_stress(this, space, latt, atom, natoms, pos, stress_ii)
Computes the contribution to the stress tensor the ion-ion energy.
integer, parameter, public dft_u_none
Definition: lda_u.F90:200
subroutine, public zlda_u_rvu(this, mesh, space, d, namespace, psib, gpsib)
This routine computes .
Definition: lda_u.F90:5344
This module is intended to contain "only mathematical" functions and procedures.
Definition: math.F90:115
subroutine, public dsymmetrize_matrix(nn, aa)
Definition: math.F90:1445
This module defines functions over batches of mesh functions.
Definition: mesh_batch.F90:116
subroutine, public zmesh_batch_dotp_vector(mesh, aa, bb, dot, reduce, cproduct)
calculate the vector of dot-products of mesh functions between two batches
This module defines various routines, operating on mesh functions.
This module defines the meshes, which are used in Octopus.
Definition: mesh.F90:118
subroutine, public messages_not_implemented(feature, namespace)
Definition: messages.F90:1125
character(len=256), dimension(max_lines), public message
to be output by fatal, warning
Definition: messages.F90:160
subroutine, public messages_fatal(no_lines, only_root_writes, namespace)
Definition: messages.F90:420
logical function mpi_grp_is_root(grp)
Is the current MPI process of grpcomm, root.
Definition: mpi.F90:430
type(mpi_grp_t), public mpi_world
Definition: mpi.F90:266
logical pure function, public poisson_solver_is_iterative(this)
Definition: poisson.F90:1300
subroutine, public dpoisson_solve(this, namespace, pot, rho, all_nodes, kernel)
Calculates the Poisson equation. Given the density returns the corresponding potential.
Definition: poisson.F90:892
subroutine, public profiling_out(label)
Increment out counter and sum up difference between entry and exit time.
Definition: profiling.F90:623
subroutine, public profiling_in(label, exclude)
Increment in counter and save entry time.
Definition: profiling.F90:552
Definition: ps.F90:114
subroutine, public species_get_long_range_density(species, namespace, space, latt, pos, mesh, rho, sphere_inout, nlr_x)
subroutine, public species_get_nlcc_grad(species, space, latt, pos, mesh, rho_core_grad, gnlcc_x)
real(real64) function, public spline_eval(spl, x)
Definition: splines.F90:441
This module handles spin dimensions of the states and the k-point distribution.
integer pure function, public states_elec_block_max(st, ib)
return index of last state in block ib
integer pure function, public states_elec_block_min(st, ib)
return index of first state in block ib
This module implements the calculation of the stress tensor.
Definition: stress.F90:118
subroutine stress_from_kinetic(gr, space, hm, st, symm, rcell_volume, stress_kin)
Computes the contribution to the stress tensor from the kinetic energy.
Definition: stress.F90:410
subroutine stress_from_xc(energy, rcell_volume, periodic_dim, stress_xc)
Computes the contribution to the stress tensor from the xc energy.
Definition: stress.F90:548
subroutine print_stress_tensor(ounit, space_dim, tensor)
Definition: stress.F90:1144
subroutine, public output_pressure(iunit, space_dim, total_stress_tensor)
Definition: stress.F90:1115
subroutine epot_local_pseudopotential_sr(mesh, ions, iatom, vpsl, rvpsl)
Definition: stress.F90:895
subroutine, public stress_calculate(namespace, gr, hm, st, ions, ks, ext_partners)
This computes the total stress on the lattice.
Definition: stress.F90:184
subroutine stress_from_hubbard(namespace, gr, st, hm, space, rcell_volume, stress_hubbard)
Computes the contribution to the stress tensor from the Hubbard energy.
Definition: stress.F90:959
subroutine stress_from_xc_nlcc(rcell_volume, gr, st, ions, vxc, stress_xc_nlcc)
Computes the NLCC contribution to the stress tensor from the xc energy.
Definition: stress.F90:577
subroutine stress_from_pseudo_nonloc(gr, st, hm, ions, stress_ps_nl)
Computes the contribution to the stress tensor from the nonlocal part of the pseudopotentials.
Definition: stress.F90:650
subroutine stress_from_hartree(gr, space, volume, vh, grad_vh, ehartree, stress_Hartree)
Computes the contribution to the stress tensor from the Hartree energy.
Definition: stress.F90:499
subroutine, public output_stress(iunit, space_dim, stress_tensors, all_terms)
Definition: stress.F90:1053
subroutine stress_from_pseudo_local(gr, st, hm, ions, rho_total, vh, grad_vh, stress_ps_local)
Computes the contribution from the local part of the pseudopotential.
Definition: stress.F90:756
subroutine, public submesh_end(this)
Definition: submesh.F90:735
subroutine, public submesh_init(this, space, mesh, latt, center, rc)
Definition: submesh.F90:280
subroutine, public dsymmetrize_tensor_cart(symm, tensor, use_non_symmorphic)
Symmetric a rank-2 tensor defined in Cartesian space.
type(type_t), public type_cmplx
Definition: types.F90:134
brief This module defines the class unit_t which is used by the unit_systems_oct_m module.
Definition: unit.F90:132
character(len=20) pure function, public units_abbrev(this)
Definition: unit.F90:223
This module defines the unit system, used for input and output.
type(unit_system_t), public units_out
Definition: xc.F90:114
logical pure function, public xc_is_energy_functional(xcs)
Is one of the x or c functional is not an energy functional.
Definition: xc.F90:728
pure logical function, public in_family(family, xc_families)
Definition: xc.F90:620
A module that takes care of xc contribution from vdW interactions.
Definition: xc_vdw.F90:116
integer(int64), dimension(5), parameter, public d3_lib_options
VDWCORRECTION options that correspond to the DFT-D3 library.
Definition: xc_vdw.F90:169
Description of the grid, containing information on derivatives, stencil, and symmetries.
Definition: grid.F90:168
Describes mesh distribution to nodes.
Definition: mesh.F90:186
The states_elec_t class contains all electronic wave functions.
A submesh is a type of mesh, used for the projectors in the pseudopotentials It contains points on a ...
Definition: submesh.F90:175
batches of electronic states
Definition: wfs_elec.F90:138
int true(void)