Octopus
ion_interaction.F90
Go to the documentation of this file.
1!! Copyright (C) 2002-2006 M. Marques, A. Castro, A. Rubio, G. Bertsch
2!! Copyright (C) 2021 N. Tancogne-Dejean
3!!
4!! This program is free software; you can redistribute it and/or modify
5!! it under the terms of the GNU General Public License as published by
6!! the Free Software Foundation; either version 2, or (at your option)
7!! any later version.
8!!
9!! This program is distributed in the hope that it will be useful,
10!! but WITHOUT ANY WARRANTY; without even the implied warranty of
11!! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12!! GNU General Public License for more details.
13!!
14!! You should have received a copy of the GNU General Public License
15!! along with this program; if not, write to the Free Software
16!! Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
17!! 02110-1301, USA.
18!!
19
20#include "global.h"
21
23 use atom_oct_m
24 use comm_oct_m
25 use debug_oct_m
26 use global_oct_m
33 use mpi_oct_m
36 use parser_oct_m
38 use ps_oct_m
40 use space_oct_m
43
44 implicit none
45
46 private
47 public :: &
55
57 real(real64) :: alpha
58 type(distributed_t) :: dist
59 end type ion_interaction_t
60
61 integer, parameter :: &
62 ION_COMPONENT_REAL = 1, &
66
67contains
68
69 subroutine ion_interaction_init(this, namespace, space, natoms)
70 type(ion_interaction_t), intent(out) :: this
71 type(namespace_t), intent(in) :: namespace
72 class(space_t), intent(in) :: space
73 integer, intent(in) :: natoms
74
75 push_sub(ion_interaction_init)
76
77 !%Variable EwaldAlpha
78 !%Type float
79 !%Default 0.21
80 !%Section Hamiltonian
81 !%Description
82 !% The value 'Alpha' that controls the splitting of the Coulomb
83 !% interaction in the Ewald sum used to calculation the ion-ion
84 !% interaction for periodic systems. This value affects the speed
85 !% of the calculation, normally users do not need to modify it.
86 !%End
87 call parse_variable(namespace, 'EwaldAlpha', 0.21_real64, this%alpha)
88
89 call distributed_nullify(this%dist, natoms)
90
91 if (space%periodic_dim == 1) then
92 call messages_write('For systems that are periodic in 1D, the interaction between', new_line = .true.)
93 call messages_write('ions is not implemented. This affects the calculation', new_line = .true.)
94 call messages_write('of total energy and forces, so both are zeroed.')
95 call messages_warning(namespace=namespace)
96 end if
97
99 end subroutine ion_interaction_init
100
101 subroutine ion_interaction_init_parallelization(this, natoms, mc)
102 type(ion_interaction_t), intent(inout) :: this
103 integer, intent(in) :: natoms
104 type(multicomm_t), intent(in) :: mc
105
107
108 !As the code below is not parallelized with any of k-point, states nor domain
109 !we can safely parallelize it over atoms
110 if (debug%info) then
111 call distributed_init(this%dist, natoms, mc%master_comm, "Ions")
112 else
113 call distributed_init(this%dist, natoms, mc%master_comm)
114 end if
118
119 subroutine ion_interaction_end(this)
120 type(ion_interaction_t), intent(inout) :: this
121
122 push_sub(ion_interaction_end)
123
124 this%alpha = -m_one
125
126 call distributed_end(this%dist)
127
128 pop_sub(ion_interaction_end)
129 end subroutine ion_interaction_end
130
135 subroutine ion_interaction_calculate(this, space, latt, atom, natoms, pos, lsize, energy, force, &
136 energy_components, force_components)
137 type(ion_interaction_t), intent(inout) :: this
138 class(space_t), intent(in) :: space
139 type(lattice_vectors_t), intent(in) :: latt
140 type(atom_t), intent(in) :: atom(:)
141 integer, intent(in) :: natoms
142 real(real64), intent(in) :: pos(1:space%dim,1:natoms)
143 real(real64), intent(in) :: lsize(:)
144 real(real64), intent(out) :: energy
145 real(real64), intent(out) :: force(:, :)
146 real(real64), optional, intent(out) :: energy_components(:)
147 real(real64), optional, intent(out) :: force_components(:, :, :)
148
151 call profiling_in("ION_ION_INTERACTION")
152
153 if (present(energy_components)) then
154 assert(ubound(energy_components, dim = 1) == ion_num_components)
155 energy_components = m_zero
156 end if
157
158 if (present(force_components)) then
159 assert(all(ubound(force_components) == (/space%dim, natoms, ion_num_components/)))
160 force_components = m_zero
161 end if
163 if (space%is_periodic() .and. any_species_is_jellium_sphere(atom)) then
164 call messages_not_implemented('No periodic implementation of ion-ion energy for the jellium sphere')
165 end if
166
167 if (space%is_periodic()) then
168 if (all_species_are_jellium_slab(atom)) then
169 energy = jellium_slab_energy_periodic(space, atom, lsize)
170 force = 0._real64
171 else
172 call ion_interaction_periodic(this, space, latt, atom, natoms, pos, energy, force, energy_components, force_components)
173 end if
174 else
175 call ion_interaction_finite(this%dist, space, atom, pos, lsize, energy, force)
176 energy = energy + jellium_self_energy_finite(this%dist, latt, atom, lsize)
177 end if
178
179 call profiling_out("ION_ION_INTERACTION")
181
182 end subroutine ion_interaction_calculate
183
189 function jellium_slab_energy_periodic(space, atom, lsize) result(energy)
190 class(space_t), intent(in) :: space
191 type(atom_t), intent(in) :: atom(:)
192 real(real64), intent(in) :: lsize(:)
193 real(real64) :: energy
195 real(real64) :: area
196
197 ! Implementation assumes a single atom
198 assert(size(atom) == 1)
199 ! This is only allowed if periodic dim = 2. In that case the lattice volume is in fact an area.
200 assert(space%periodic_dim == 2)
201
202 select type(spec => atom(1)%species)
203 type is (jellium_slab_t)
204 area = lsize(1) * lsize(2) * m_four
205 energy = m_pi * spec%get_density(lsize) **2 * area * spec%thickness()**3 / m_three
206 class default
207 assert(.false.)
208 end select
209
211
225 function jellium_self_energy_finite(dist, latt, atom, lsize) result(energy)
226 type(distributed_t), intent(in) :: dist
227 type(lattice_vectors_t), intent(in) :: latt
228 type(atom_t), intent(in) :: atom(:)
229 real(real64), intent(in) :: lsize(:)
230 real(real64) :: energy
231
232 real(real64) :: zi
233 integer :: iatom
234 logical :: lattice_is_orthogonal
235 class(species_t), pointer :: spec
236
238
239 energy = 0._real64
240 lattice_is_orthogonal = .not. latt%nonorthogonal
241
242 do iatom = dist%start, dist%end
243 spec => atom(iatom)%species
244 zi = spec%get_zval()
245
246 select type(spec)
247 type is (jellium_sphere_t)
248 energy = energy + (m_three / m_five) * zi**2 / spec%radius()
249 ! The part depending on the simulation sphere is neglected
250
251 type is (jellium_slab_t)
252 ! Jellium slab energy only implemented for orthogonal cells.
253 ! One would need to replace (lsize(1) * lsize(2)) * spec%thickness()) with the triple product
254 assert(lattice_is_orthogonal)
255 energy = energy + m_pi * zi**2 / (m_four * lsize(1)*lsize(2)) * spec%thickness() / m_three
256 ! The part depending on the simulation box transverse dimension is neglected
257 end select
258 nullify(spec)
259 enddo
260
261 call comm_allreduce(dist%mpi_grp, energy)
262
264
265 end function jellium_self_energy_finite
266
268 subroutine ion_interaction_finite(dist, space, atom, pos, lsize, energy, force)
269 type(distributed_t), intent(in) :: dist
270 class(space_t), intent(in) :: space
271 type(atom_t), intent(in) :: atom(:)
272 real(real64), intent(in) :: pos(:,:)
273 real(real64), intent(in) :: lsize(:)
274 real(real64), intent(out) :: energy
275 real(real64), intent(out) :: force(:, :)
276
277 class(species_t), pointer :: species_i, species_j
278 real(real64) :: r(space%dim), f(space%dim)
279 real(real64) :: r_mag
280 real(real64) :: u_e
281 real(real64) :: zi, zj
282 integer :: iatom, jatom, natoms
283
284 push_sub(ion_interaction_finite)
285
286 natoms = size(atom)
287 energy = m_zero
288 force(1:space%dim, 1:natoms) = m_zero
289
290 do iatom = dist%start, dist%end
291 species_i => atom(iatom)%species
292 zi = species_i%get_zval()
293
294 do jatom = iatom + 1, natoms
295 species_j => atom(jatom)%species
296 zj = species_j%get_zval()
297
298 r = pos(:, iatom) - pos(:, jatom)
299 r_mag = norm2(r)
300 u_e = zi * zj / r_mag
301
302 energy = energy + u_e
303 f(1:space%dim) = (u_e / r_mag**2) * r(1:space%dim)
304 force(1:space%dim, iatom) = force(1:space%dim, iatom) + f(1:space%dim)
305 force(1:space%dim, jatom) = force(1:space%dim, jatom) - f(1:space%dim)
306 end do
307 end do
308
309 call comm_allreduce(dist%mpi_grp, energy)
310 call comm_allreduce(dist%mpi_grp, force)
311
312 nullify(species_i, species_j)
313
315
316 end subroutine ion_interaction_finite
317
319 subroutine ion_interaction_periodic(this, space, latt, atom, natoms, pos, energy, force, &
320 energy_components, force_components)
321 type(ion_interaction_t), intent(in) :: this
322 class(space_t), intent(in) :: space
323 type(lattice_vectors_t), intent(in) :: latt
324 type(atom_t), intent(in) :: atom(:)
325 integer, intent(in) :: natoms
326 real(real64), intent(in) :: pos(1:space%dim,1:natoms)
327 real(real64), intent(out) :: energy
328 real(real64), intent(out) :: force(:, :)
329 real(real64), optional, intent(out) :: energy_components(:)
330 real(real64), optional, intent(out) :: force_components(:, :, :)
331
332 real(real64) :: ereal, efourier, epseudo, eself
333 real(real64) :: charge
334
336
337 energy = m_zero
338 force(1:space%dim, 1:natoms) = m_zero
339
340 call ewald_short(this%dist, space, latt, atom, pos, this%alpha, ereal, force)
341 if (present(force_components)) then
342 force_components(1:space%dim, 1:natoms, ion_component_real) = force(1:space%dim, 1:natoms)
343 end if
344
345 call ewald_self_interaction(this%dist, atom, this%alpha, eself, charge)
346
347 call profiling_in("EWALD_LONG")
348 select case (space%periodic_dim)
349 case (1)
350 ! Warning added in init routine, such that it is not displayed per SCF step
351 efourier = m_zero
352 ! Do not confuse the user and set to zero all the other components
353 ereal = m_zero
354 eself = m_zero
355 force = m_zero
356 epseudo = m_zero
357 case (2)
358 ! The energy contribution of the long range part of the pseudo is
359 ! not correctly accounted for in systems periodic in 1D or 2D, however
360 ! this term should not appear here anyway. See Issue #950.
361 epseudo = m_zero
362 call ewald_long_2d(this, space, latt, atom, natoms, pos, efourier, force)
363 case (3)
364 call ewald_long_3d(this, space, latt, atom, natoms, pos, efourier, force, charge)
365 !TODO(Alex/Nicolas) Issue #950. Refactor: Move G=0 correction from ion-ion energy to pseudopotential energy
366 call pseudopotential_correction_3d(this%dist, latt, atom, charge, epseudo)
367 end select
368 call profiling_out("EWALD_LONG")
369
370 if (present(energy_components)) then
371 energy_components(ion_component_real) = ereal
372 energy_components(ion_component_self) = eself
373 energy_components(ion_component_fourier) = efourier
374 end if
375
376 if (present(force_components)) then
377 ! This is dependent on the order in which the force terms are computed
378 force_components(1:space%dim, 1:natoms, ion_component_fourier) = &
379 force(1:space%dim, 1:natoms) - force_components(1:space%dim, 1:natoms, ion_component_real)
380 end if
381
382 energy = ereal + efourier + eself + epseudo
383
385 end subroutine ion_interaction_periodic
386
409 subroutine ewald_short(dist, space, latt, atom, pos, alpha, ereal, force)
410 type(distributed_t), intent(in) :: dist
411 class(space_t), intent(in) :: space
412 type(lattice_vectors_t), intent(in) :: latt
413 type(atom_t), intent(in) :: atom(:)
414 real(real64), intent(in) :: pos(:, :)
415
416 real(real64), intent(in) :: alpha
417 real(real64), intent(out) :: ereal
418 real(real64), intent(inout) :: force(:, :)
419 ! Intent(inout) allows force contributions to be summed
420 integer :: iatom, jatom, icopy, natoms
421 real(real64) :: rnorm, xi(space%dim)
422 real(real64) :: force_real(space%dim)
423 real(real64) :: zi, zj
424 real(real64) :: erfc
425 real(real64) :: rcut
426 type(lattice_iterator_t) :: latt_iter
427 real(real64) :: charge, coeff
428
429 push_sub_with_profile(ewald_short)
430
431 ereal = m_zero
432 ! Origin of this value is not documented
433 rcut = 6.0_real64 / alpha
434 latt_iter = lattice_iterator_t(latt, rcut)
435 natoms = size(atom)
436
437 charge = m_zero
438 do iatom = dist%start, dist%end
439 if (.not. atom(iatom)%species%represents_real_atom()) cycle
440 zi = atom(iatom)%species%get_zval()
441 charge = charge + zi**2
442 end do
443
444 ! Diagonal terms iatom == jatom for all cells, except T=(0,0,0)
445 ! Note: Only half of the copies are needed, by symmetries
446 do icopy = 1, latt_iter%n_cells
447 rnorm = norm2(latt_iter%get(icopy))
448 if (rnorm < r_min_atom_dist) cycle
449 if (rnorm > rcut) cycle
450 erfc = loct_erfc(alpha * rnorm)
451 ereal = ereal + m_half * charge * erfc /rnorm
452 end do
453
454 coeff = m_two * alpha / sqrt(m_pi)
455
456 !$omp parallel default(shared) private(iatom, jatom, zi, zj, icopy, xi, rnorm, erfc, force_real) reduction(+:ereal, force)
457 do iatom = dist%start, dist%end
458 if (.not. atom(iatom)%species%represents_real_atom()) cycle
459 zi = atom(iatom)%species%get_zval()
460
461 ! Upper triangle, for all replica cells
462 do jatom = iatom + 1, natoms
463 zj = atom(jatom)%species%get_zval()
464
465 charge = zi*zj
466
467 !$omp do
468 do icopy = 1, latt_iter%n_cells
469 xi = pos(:, iatom) + latt_iter%get(icopy)
470 rnorm = norm2(xi - pos(:, jatom))
471 if (rnorm > rcut) cycle
472
473 erfc = loct_erfc(alpha * rnorm) / rnorm
474
475 ! Factor 1/2 omitted as one is only summing over upper triangle
476 ereal = ereal + charge * erfc
477
478 force_real(:) = charge * (xi - pos(:, jatom)) * &
479 (erfc + coeff *exp(-(alpha*rnorm)**2)) / rnorm**2
480
481 ! Upper trianglar contribution
482 force(1:space%dim, jatom) = force(1:space%dim, jatom) - force_real
483
484 ! Lower triangular contribution
485 force(1:space%dim, iatom) = force(1:space%dim, iatom) + force_real
486 end do
487 !$omp end do
488
489 end do
490 end do
491 !$omp end parallel
492
493 call comm_allreduce(dist%mpi_grp, ereal)
494 call comm_allreduce(dist%mpi_grp, force)
495
496 pop_sub_with_profile(ewald_short)
497 end subroutine ewald_short
498
503 subroutine ewald_self_interaction(dist, atom, alpha, eself, charge)
504 type(distributed_t), intent(in) :: dist
505 type(atom_t), intent(in) :: atom(:)
506 real(real64), intent(in) :: alpha
507 real(real64), intent(out) :: eself
508 real(real64), intent(out) :: charge
509
510 integer :: iatom
511 real(real64) :: zi
512
513 push_sub(ewald_self_interaction)
514
515 eself = m_zero
516 charge = m_zero
517
518 do iatom = dist%start, dist%end
519 zi = atom(iatom)%species%get_zval()
520 charge = charge + zi
521 eself = eself - alpha / sqrt(m_pi) * zi**2
522 end do
523
524 call comm_allreduce(dist%mpi_grp, eself)
525 call comm_allreduce(dist%mpi_grp, charge)
526
528 end subroutine ewald_self_interaction
529
531 subroutine ewald_long_3d(this, space, latt, atom, natoms, pos, efourier, force, charge)
532 type(ion_interaction_t), intent(in) :: this
533 class(space_t), intent(in) :: space
534 type(lattice_vectors_t), intent(in) :: latt
535 type(atom_t), intent(in) :: atom(:)
536 integer, intent(in) :: natoms
537 real(real64), intent(in) :: pos(:,:)
538 real(real64), intent(inout) :: efourier
539 real(real64), intent(inout) :: force(:, :)
540 real(real64), intent(in) :: charge
541
542 real(real64) :: rcut, gmax_squared
543 integer :: iatom
544 integer :: ix, iy, iz, isph
545 real(real64) :: gvec(3), gred(3), gg2, gx
546 real(real64) :: factor
547 complex(real64) :: sumatoms, tmp(3), aa
548
549 complex(real64), allocatable :: phase(:)
550
551 push_sub(ewald_long_3d)
552
553 assert(space%dim == 3)
554 assert(space%periodic_dim == 3)
555
556 ! And the long-range part, using an Ewald sum
557 safe_allocate(phase(1:natoms))
558
559 ! get a converged value for the cutoff in g
560 rcut = sqrt(minval(sum(latt%klattice**2, dim=1)))
561
562 ! 9.5 is a constant that controls the range separation
563 isph = ceiling(9.5_real64*this%alpha/rcut)
564
565 ! First the G = 0 term (charge was calculated previously)
566 efourier = -m_pi*charge**2/(m_two*this%alpha**2*latt%rcell_volume)
567
568 ! Getting the G-shell cutoff
569 gmax_squared = isph**2 * minval(sum(latt%klattice**2, dim=1))
570
571 do ix = -isph, isph
572 do iy = -isph, isph
573 do iz = -isph, isph
574
575 ! Exploit k <-> -k symmetry
576 ! Only process one half of reciprocal space.
577 ! g=0 must also be removed from the sum
578 if (ix < 0) cycle
579 if (ix == 0 .and. iy < 0) cycle
580 if (ix == 0 .and. iy == 0 .and. iz <= 0) cycle
581
582 gred = [ix, iy, iz]
583 call kpoints_to_absolute(latt, gred, gvec)
584 gg2 = dot_product(gvec, gvec)
585
586 if (gg2 > gmax_squared*1.001_real64) cycle
587
588 gx = -0.25_real64*gg2/this%alpha**2
589
590 if (gx < -36.0_real64) cycle
591
592 ! We have used the k-> -k symmetry, hence the factor 4
593 factor = m_four*m_pi/latt%rcell_volume*exp(gx)/gg2
594
595 if (factor < epsilon(factor)) cycle
597 sumatoms = m_z0
598 !$omp parallel do private(iatom, gx, aa) reduction(+:sumatoms)
599 do iatom = 1, natoms
600 gx = sum(gvec*pos(:,iatom))
601 aa = atom(iatom)%species%get_zval()*cmplx(cos(gx), sin(gx), real64)
602 phase(iatom) = aa
603 sumatoms = sumatoms + aa
604 end do
605
606 efourier = efourier + factor * real(sumatoms*conjg(sumatoms), real64)
607
608 do iatom = 1, natoms
609 tmp = m_zi*gvec*phase(iatom)
610 force(1:space%dim, iatom) = force(1:space%dim, iatom) - factor*real(conjg(tmp)*sumatoms + tmp*conjg(sumatoms), real64)
611
612 end do
613
614 end do
615 end do
616 end do
617
618 safe_deallocate_a(phase)
619
620 pop_sub(ewald_long_3d)
621
622 end subroutine ewald_long_3d
623
627 subroutine ewald_long_2d(this, space, latt, atom, natoms, pos, efourier, force)
628 type(ion_interaction_t), intent(in) :: this
629 class(space_t), intent(in) :: space
630 type(lattice_vectors_t), intent(in) :: latt
631 type(atom_t), intent(in) :: atom(:)
632 integer, intent(in) :: natoms
633 real(real64), intent(in) :: pos(1:space%dim,1:natoms)
634 real(real64), intent(inout) :: efourier
635 real(real64), intent(inout) :: force(:, :)
636
637 real(real64) :: rcut, gmax_squared
638 integer :: iatom, jatom
639 integer :: ix, iy, ix_max, iy_max
640 real(real64) :: gvec(space%dim), gg2, gx, gg_abs
641 real(real64) :: factor,factor1,factor2, coeff
642 real(real64) :: dz_max, dz_ij, erfc1, erfc2, tmp_erf
643 real(real64), allocatable :: force_tmp(:,:)
644 real(real64), parameter :: tol = 1e-10_real64
645
646 push_sub(ewald_long_2d)
647
648 assert(space%periodic_dim == 2)
649 assert(space%dim == 2 .or. space%dim == 3)
650
651 ! And the long-range part, using an Ewald sum
652
653 ! Searching maximum distance
654 if (space%dim == 3) then
655 dz_max = m_zero
656 do iatom = 1, natoms
657 do jatom = iatom + 1, natoms
658 dz_max = max(dz_max, abs(pos(3, iatom) - pos(3, jatom)))
659 end do
660 end do
661 else
662 ! For a 2D system, all atoms are on the plane, so the distance is zero
663 dz_max = m_zero
664 end if
665
666 !get a converged value for the cutoff in g
667 rcut = m_two*this%alpha*4.6_real64 + m_two*this%alpha**2*dz_max
668 if (dz_max > tol) then
669 do
670 if (rcut * dz_max >= m_max_exp_arg) exit !Maximum double precision number
671 erfc1 = m_one - loct_erf(this%alpha*dz_max + m_half*rcut/this%alpha)
672 if (erfc1 * exp(rcut*dz_max) < 1.e-10_real64) exit
673 rcut = rcut * 1.414_real64
674 end do
675 end if
676
677 ix_max = ceiling(rcut/norm2(latt%klattice(:, 1)))
678 iy_max = ceiling(rcut/norm2(latt%klattice(:, 2)))
679
680 safe_allocate(force_tmp(1:space%dim, 1:natoms))
681 force_tmp = m_zero
682
683 ! First the G = 0 term
684 efourier = m_zero
685 factor = m_pi/latt%rcell_volume
686 !$omp parallel do private(jatom, dz_ij, tmp_erf, factor1, factor2) reduction(+:efourier,force_tmp) &
687 !$omp& collapse(2)
688 do iatom = this%dist%start, this%dist%end
689 do jatom = 1, natoms
690 ! efourier
691 if (space%dim == 3) then
692 dz_ij = pos(3, iatom) - pos(3, jatom)
693 else
694 dz_ij = m_zero
695 end if
696
697 tmp_erf = loct_erf(this%alpha*dz_ij)
698 factor1 = dz_ij*tmp_erf
699 factor2 = exp(-(this%alpha*dz_ij)**2)/(this%alpha*sqrt(m_pi))
700
701 efourier = efourier - factor &
702 * atom(iatom)%species%get_zval()*atom(jatom)%species%get_zval() * (factor1 + factor2)
703
704 ! force
705 if (iatom == jatom)cycle
706 if (abs(tmp_erf) < m_epsilon) cycle
707
708 if (space%dim == 3) then
709 force_tmp(3, iatom) = force_tmp(3, iatom) - (- m_two*factor) &
710 * atom(iatom)%species%get_zval()*atom(jatom)%species%get_zval() * tmp_erf
711 end if
712
713 end do
714 end do
715
716 ! Getting the G-shell cutoff
717 gmax_squared = sum(ix_max*latt%klattice(:, 1)**2)
718 gmax_squared = min(gmax_squared, sum(iy_max*latt%klattice(:, 2)**2))
719
720 !$omp parallel do private(iy, gvec, gg2, gg_abs, factor, iatom, jatom, gx, dz_ij, erfc1, factor1, erfc2, factor2, coeff) &
721 !$omp& collapse(2) reduction(+:efourier, force_tmp)
722 do ix = -ix_max, ix_max
723 do iy = -iy_max, iy_max
724
725 gvec = ix*latt%klattice(:, 1) + iy*latt%klattice(:, 2)
726 gg2 = sum(gvec**2)
727
728 ! g=0 must be removed from the sum
729 if (gg2 < m_epsilon .or. gg2 > gmax_squared*1.001_real64) cycle
730 gg_abs = sqrt(gg2)
731 factor = m_half*m_pi/(latt%rcell_volume*gg_abs)
732
733 do iatom = this%dist%start, this%dist%end
734 do jatom = iatom, natoms
735 ! efourier
736 gx = sum(gvec(1:2) * (pos(1:2, iatom) - pos(1:2, jatom)))
737 gx = gvec(1)*(pos(1, iatom) - pos(1, jatom)) + gvec(2)*(pos(2, iatom) - pos(2, jatom))
738 if (space%dim == 3) then
739 dz_ij = pos(3, iatom) - pos(3, jatom)
740 else
741 dz_ij = m_zero
742 end if
743
744 erfc1 = m_one - loct_erf(this%alpha*dz_ij + m_half*gg_abs/this%alpha)
745 if (abs(erfc1) > m_epsilon) then
746 factor1 = exp(gg_abs*dz_ij)*erfc1
747 else
748 factor1 = m_zero
749 end if
750 erfc2 = m_one - loct_erf(-this%alpha*dz_ij + m_half*gg_abs/this%alpha)
751 if (abs(erfc2) > m_epsilon) then
752 factor2 = exp(-gg_abs*dz_ij)*erfc2
753 else
754 factor2 = m_zero
755 end if
756
757 if (iatom == jatom) then
758 coeff = m_one
759 else
760 coeff = m_two
761 end if
762
763 efourier = efourier &
764 + factor * coeff &
765 * atom(iatom)%species%get_zval()*atom(jatom)%species%get_zval() &
766 * cos(gx)* ( factor1 + factor2)
767
768 ! force
769 if (iatom == jatom) cycle
770
771 force_tmp(1:2, iatom) = force_tmp(1:2, iatom) &
772 + m_two * factor * gvec(1:2) &
773 * atom(iatom)%species%get_zval()*atom(jatom)%species%get_zval() &
774 *sin(gx)*(factor1 + factor2)
775
776 force_tmp(1:2, jatom) = force_tmp(1:2, jatom) &
777 - m_two * factor * gvec(1:2) &
778 * atom(iatom)%species%get_zval()*atom(jatom)%species%get_zval() &
779 *sin(gx)*(factor1 + factor2)
780
781 factor1 = gg_abs*erfc1 &
782 - m_two*this%alpha/sqrt(m_pi)*exp(-(this%alpha*dz_ij + m_half*gg_abs/this%alpha)**2)
783 if (abs(factor1) > m_epsilon) then
784 factor1 = factor1*exp(gg_abs*dz_ij)
785 else
786 factor1 = m_zero
787 end if
788
789 factor2 = gg_abs*erfc2 &
790 - m_two*this%alpha/sqrt(m_pi)*exp(-(-this%alpha*dz_ij + m_half*gg_abs/this%alpha)**2)
791 if (abs(factor2) > m_epsilon) then
792 factor2 = factor2*exp(-gg_abs*dz_ij)
793 else
794 factor2 = m_zero
795 end if
796
797 if (space%dim == 3) then
798 force_tmp(3, iatom) = force_tmp(3, iatom) &
799 - m_two*factor &
800 * atom(iatom)%species%get_zval()*atom(jatom)%species%get_zval() &
801 * cos(gx)* ( factor1 - factor2)
802 force_tmp(3, jatom) = force_tmp(3, jatom) &
803 + m_two*factor &
804 * atom(iatom)%species%get_zval()*atom(jatom)%species%get_zval() &
805 * cos(gx)* ( factor1 - factor2)
806 end if
807
808 end do
809 end do
810
811
812 end do
813 end do
814
815 call comm_allreduce(this%dist%mpi_grp, efourier)
816 call comm_allreduce(this%dist%mpi_grp, force_tmp)
817
818 force = force + force_tmp
819
820 safe_deallocate_a(force_tmp)
821
822 pop_sub(ewald_long_2d)
823 end subroutine ewald_long_2d
824
825 !TODO(Alex/Nicolas) Issue #950. Refactor: Move G=0 correction from ion-ion energy to pseudopotential energy
832 subroutine pseudopotential_correction_3d(dist, latt, atom, charge, epseudo)
833 type(distributed_t), intent(in) :: dist
834 type(lattice_vectors_t), intent(in) :: latt
835 type(atom_t), intent(in) :: atom(:)
836 real(real64), intent(out) :: epseudo
837
838 real(real64) :: zi
839 real(real64) :: charge
840 integer :: iatom
841
843
844 epseudo = m_zero
845 do iatom = dist%start, dist%end
846 select type(spec => atom(iatom)%species)
847 class is(pseudopotential_t)
848 zi = spec%get_zval()
849 epseudo = epseudo + m_pi *zi * &
850 (spec%ps%sigma_erf * sqrt(m_two))**2 / latt%rcell_volume * charge
851 end select
852 end do
853 call comm_allreduce(dist%mpi_grp, epseudo)
854
856
857 end subroutine pseudopotential_correction_3d
858
860 subroutine ion_interaction_stress(this, space, latt, atom, natoms, pos, stress_ii)
861 type(ion_interaction_t), intent(inout) :: this
862 class(space_t), intent(in) :: space
863 type(lattice_vectors_t), intent(in) :: latt
864 type(atom_t), intent(in) :: atom(:)
865 integer, intent(in) :: natoms
866 real(real64), intent(in) :: pos(1:space%dim,1:natoms)
867 real(real64), intent(out) :: stress_ii(space%dim, space%dim)
868
869 real(real64) :: stress_short(1:space%dim, 1:space%dim), stress_Ewald(1:space%dim, 1:space%dim)
870
871 push_sub(ion_interaction_stress)
872
873 stress_ii = m_zero
874
875 ! Only implemented in the periodic case
876 assert(space%is_periodic())
877
878 ! Short range part in real space
879 call ion_interaction_stress_short(this, space, latt, atom, natoms, pos, stress_short)
880
881 ! Long range part in Fourier space
882 select case(space%periodic_dim)
883 case(3)
884 call ewald_3d_stress(this, space, latt, atom, natoms, pos, stress_ewald)
885 case(2)
886 call ewald_2d_stress(this, space, latt, atom, natoms, pos, stress_ewald)
887 case default
888 assert(.false.)
889 end select
890
891 stress_ii = stress_short + stress_ewald
892
894 end subroutine ion_interaction_stress
895
896 ! ---------------------------------------------------------
914
915 subroutine ion_interaction_stress_short(this, space, latt, atom, natoms, pos, stress_short)
916 type(ion_interaction_t), intent(inout) :: this
917 class(space_t), intent(in) :: space
918 type(lattice_vectors_t), intent(in) :: latt
919 type(atom_t), intent(in) :: atom(:)
920 integer, intent(in) :: natoms
921 real(real64), intent(in) :: pos(1:space%dim,1:natoms)
922 real(real64), intent(out) :: stress_short(1:space%dim, 1:space%dim)
923
924 real(real64) :: xi(space%dim)
925 real(real64) :: r_ij, zi, zj, erfc, Hp, factor
926 integer :: iatom, jatom, icopy, idir, jdir
927 real(real64) :: alpha, rcut
928 type(lattice_iterator_t) :: latt_iter
929
931 call profiling_in("ION_ION_STRESS_SHORT")
932
933 ! Only implemented in the periodic case
934 assert(space%is_periodic())
935
936 alpha = this%alpha
937
938 ! See the code for the energy above to understand this parameter
939 rcut = 6.0_real64/alpha
940
941 ! the short-range part is calculated directly
942 stress_short = m_zero
943 latt_iter = lattice_iterator_t(latt, rcut)
944
945 do iatom = this%dist%start, this%dist%end
946 select type(spec => atom(iatom)%species)
947 class is(jellium_t)
948 cycle
949 end select
950 zi = atom(iatom)%species%get_zval()
951
952 do icopy = 1, latt_iter%n_cells
953 xi = pos(:, iatom) + latt_iter%get(icopy)
954
955 do jatom = 1, natoms
956 zj = atom(jatom)%species%get_zval()
957 r_ij = norm2(xi - pos(:, jatom))
958
959 if (r_ij < r_min_atom_dist) cycle
960
961 erfc = loct_erfc(alpha*r_ij)
962 hp = -m_two/sqrt(m_pi)*exp(-(alpha*r_ij)**2) - erfc/(alpha*r_ij)
963 factor = m_half*zj*zi*alpha*hp
964 do idir = 1, space%periodic_dim
965 do jdir = 1, space%periodic_dim
966 stress_short(idir, jdir) = stress_short(idir, jdir) &
967 - factor*(xi(idir) - pos(idir, jatom))*(xi(jdir) - pos(jdir, jatom))/(r_ij**2)
968 end do
969 end do
970
971 end do
972 end do
973 end do
974
975 if (this%dist%parallel) then
976 call comm_allreduce(this%dist%mpi_grp, stress_short)
977 end if
978
979 stress_short = stress_short/latt%rcell_volume
980
981 call profiling_out("ION_ION_STRESS_SHORT")
982
984 end subroutine ion_interaction_stress_short
985
986
987
988 ! ---------------------------------------------------------
1003 subroutine ewald_3d_stress(this, space, latt, atom, natoms, pos, stress_Ewald)
1004 type(ion_interaction_t), intent(inout) :: this
1005 class(space_t), intent(in) :: space
1006 type(lattice_vectors_t), intent(in) :: latt
1007 type(atom_t), intent(in) :: atom(:)
1008 integer, intent(in) :: natoms
1009 real(real64), intent(in) :: pos(1:space%dim,1:natoms)
1010 real(real64), intent(out) :: stress_Ewald(3, 3)
1011
1012 real(real64) :: zi, rcut, gmax_squared
1013 integer :: iatom
1014 integer :: ix, iy, iz, isph, idim, idir, jdir
1015 real(real64) :: gred(3), gvec(3), gg2, gx
1016 real(real64) :: factor, charge, charge_sq, off_diagonal_weight
1017 complex(real64) :: sumatoms, aa
1018
1019 call profiling_in("STRESS_3D_EWALD")
1020 push_sub(ewald_3d_stress)
1021
1022 ! Currently this is only implemented for 3D
1023 assert(space%dim == 3)
1024 assert(space%periodic_dim == 3) ! Not working for mixed periodicity
1025 ! (klattice along the non-periodic directions is wrong)
1026 ! Anyway gg/gg2 is not correct for mixed periodicity
1027
1028 stress_ewald = m_zero
1029
1030 ! And the long-range part, using an Ewald sum
1031 charge = m_zero
1032 charge_sq = m_zero
1033 do iatom = 1, natoms
1034 zi = atom(iatom)%species%get_zval()
1035 charge = charge + zi
1036 charge_sq = charge_sq + zi**2
1037 end do
1038
1039 ! get a converged value for the cutoff in g
1040 rcut = huge(rcut)
1041 do idim = 1, space%periodic_dim
1042 rcut = min(rcut, sum(latt%klattice(1:space%periodic_dim, idim)**2))
1043 end do
1044
1045 rcut = sqrt(rcut)
1046
1047 isph = ceiling(9.5_real64*this%alpha/rcut)
1048
1049 ! Getting the G-shell cutoff
1050 gmax_squared = isph**2 * minval(sum(latt%klattice**2, dim=1))
1051
1052 do ix = -isph, isph
1053 do iy = -isph, isph
1054 do iz = -isph, isph
1055
1056 ! Exploit k <-> -k symmetry
1057 ! Only process one half of reciprocal space.
1058 ! g=0 must also be removed from the sum
1059 if (ix < 0) cycle
1060 if (ix == 0 .and. iy < 0) cycle
1061 if (ix == 0 .and. iy == 0 .and. iz <= 0) cycle
1062
1063 gred = [ix, iy, iz]
1064 call kpoints_to_absolute(latt, gred, gvec)
1065 gg2 = sum(gvec**2)
1066
1067 ! g=0 must be removed from the sum
1068 if (gg2 > gmax_squared*1.001_real64) cycle
1069
1070 gx = -0.25_real64*gg2/this%alpha**2
1071
1072 if (gx < -36.0_real64) cycle
1073
1074 ! We have used the k-> -k symmetry, hence the factor 4
1075 factor = m_four*m_pi*exp(gx)/(latt%rcell_volume*gg2)
1076
1077 if (factor < epsilon(factor)) cycle
1078
1079 sumatoms = m_z0
1080
1081 do iatom = 1, natoms
1082 gx = sum(gvec*pos(:, iatom))
1083 aa = atom(iatom)%species%get_zval()*cmplx(cos(gx), sin(gx), real64)
1084 sumatoms = sumatoms + aa
1085 end do
1086
1087 factor = factor*abs(sumatoms)**2
1088 off_diagonal_weight = - m_two*factor/gg2*(0.25_real64*gg2/this%alpha**2+m_one)
1089
1090 do idir = 1, 3
1091 do jdir = 1, 3
1092 stress_ewald(idir, jdir) = stress_ewald(idir, jdir) &
1093 + gvec(idir) * gvec(jdir) * off_diagonal_weight
1094 end do
1095 stress_ewald(idir, idir) = stress_ewald(idir, idir) + factor
1096 end do
1097
1098 end do
1099 end do
1100 end do
1101
1102
1103 ! The G = 0 term of the Ewald summation
1104 factor = m_half*m_pi*charge**2/(latt%rcell_volume*this%alpha**2)
1105 do idir = 1,3
1106 stress_ewald(idir,idir) = stress_ewald(idir,idir) - factor
1107 end do
1108
1109 stress_ewald = stress_ewald / latt%rcell_volume
1110
1111
1112 call profiling_out("STRESS_3D_EWALD")
1113 pop_sub(ewald_3d_stress)
1114
1115 end subroutine ewald_3d_stress
1116
1117 ! ---------------------------------------------------------
1133 subroutine ewald_2d_stress(this, space, latt, atom, natoms, pos, stress_Ewald)
1134 type(ion_interaction_t), intent(inout) :: this
1135 type(space_t), intent(in) :: space
1136 type(lattice_vectors_t), intent(in) :: latt
1137 type(atom_t), intent(in) :: atom(:)
1138 integer, intent(in) :: natoms
1139 real(real64), intent(in) :: pos(1:space%dim,1:natoms)
1140 real(real64), intent(out) :: stress_Ewald(3, 3)
1141
1142 real(real64) :: rcut, efourier
1143 integer :: iatom, jatom, idir, jdir
1144 integer :: ix, iy, ix_max, iy_max
1145 real(real64) :: gvec(3), gred(3), gg2, cos_gx, gg_abs, gmax_squared
1146 real(real64) :: factor,factor1,factor2, coeff, e_ewald
1147 real(real64) :: dz_max, z_ij, erfc1, erfc2, diff(3)
1148 real(real64), parameter :: tol = 1e-10_real64
1149
1150 push_sub(ewald_2d_stress)
1151
1152 assert(space%periodic_dim == 2)
1153 assert(space%dim == 3)
1154
1155 stress_ewald = m_zero
1156
1157 ! Searching maximum distance
1158 dz_max = m_zero
1159 do iatom = 1, natoms
1160 do jatom = iatom + 1, natoms
1161 dz_max = max(dz_max, abs(pos(3, iatom) - pos(3, jatom)))
1162 end do
1163 end do
1164
1165 !get a converged value for the cutoff in g
1166 ! Note: to understand these numbers, one needs to look into the energy routine for Ewald 2D
1167 rcut = m_two*this%alpha*4.6_real64 + m_two*this%alpha**2*dz_max
1168 if (dz_max > tol) then ! Else the code here does not work properly
1169 do
1170 if (rcut * dz_max >= m_max_exp_arg) exit !Maximum double precision number
1171 erfc1 = m_one - loct_erf(this%alpha*dz_max + m_half*rcut/this%alpha)
1172 if (erfc1 * exp(rcut*dz_max) < tol) exit
1173 rcut = rcut * 1.414_real64
1174 end do
1175 end if
1176
1177 ! First the G = 0 term
1178 efourier = m_zero
1179 factor = m_pi/latt%rcell_volume
1180 !$omp parallel do private(jatom, z_ij, factor1, factor2) reduction(+:efourier) collapse(2)
1181 do iatom = 1, natoms
1182 do jatom = 1, natoms
1183 z_ij = pos(3, iatom) - pos(3, jatom)
1184
1185 factor1 = z_ij * loct_erf(this%alpha*z_ij)
1186 factor2 = exp(-(this%alpha*z_ij)**2)/(this%alpha*sqrt(m_pi))
1187
1188 efourier = efourier - factor &
1189 * atom(iatom)%species%get_zval()*atom(jatom)%species%get_zval() * (factor1 + factor2)
1190 end do
1191 end do
1192
1193 ! Adding the G=0 term
1194 do idir = 1, 2
1195 stress_ewald(idir, idir) = efourier
1196 end do
1197
1198 ! Getting the G-shell cutoff
1199 ix_max = ceiling(rcut/norm2(latt%klattice(:, 1)))
1200 iy_max = ceiling(rcut/norm2(latt%klattice(:, 2)))
1201 gmax_squared = sum(ix_max*latt%klattice(:, 1)**2)
1202 gmax_squared = min(gmax_squared, sum(iy_max*latt%klattice(:, 2)**2))
1203
1204 !$omp parallel do private(iy, gvec, gg2, gg_abs, factor, iatom, jatom, diff, cos_gx, z_ij, idir, jdir, erfc1, factor1) &
1205 !$omp& private(erfc2, factor2, coeff, e_ewald) &
1206 !$omp& collapse(2) reduction(+:stress_Ewald)
1207 do ix = -ix_max, ix_max
1208 do iy = -iy_max, iy_max
1209
1210 gred = [ix, iy, 0]
1211 call kpoints_to_absolute(latt, gred, gvec)
1212 gg2 = dot_product(gvec,gvec)
1213
1214 ! g=0 must be removed from the sum
1215 if (gg2 < m_epsilon .or. gg2 > gmax_squared*1.001_real64) cycle
1216
1217 gg_abs = sqrt(gg2)
1218 factor = m_fourth*m_pi/(latt%rcell_volume*this%alpha*gg2)
1219
1220 do iatom = 1, natoms
1221 do jatom = iatom, natoms
1222 diff = pos(:, iatom) - pos(:, jatom)
1223 cos_gx = cos(sum(gvec(1:2) * diff(1:2)))
1224 z_ij = diff(3)
1225
1226 factor1 = screening_function_2d(this%alpha, z_ij, gg_abs, erfc1)
1227 factor2 = screening_function_2d(this%alpha,-z_ij, gg_abs, erfc2)
1228
1229 if (iatom == jatom) then
1230 coeff = m_one
1231 else
1232 coeff = m_two
1233 end if
1234
1235 do idir = 1, 2
1236 do jdir = 1, 2
1237 stress_ewald(idir, jdir) = stress_ewald(idir, jdir) &
1238 - factor*gvec(idir)*gvec(jdir) * cos_gx * (factor1 + factor2) * coeff&
1239 * atom(iatom)%species%get_zval()*atom(jatom)%species%get_zval()
1240 end do
1241 end do
1242
1243 if (abs(erfc1) > m_epsilon) then
1244 factor1 = exp(-gg_abs*z_ij)*erfc1
1245 else
1246 factor1 = m_zero
1247 end if
1248 if (abs(erfc2) > m_epsilon) then
1249 factor2 = exp(gg_abs*z_ij)*erfc2
1250 else
1251 factor2 = m_zero
1252 end if
1253
1254 e_ewald = m_half * m_pi/latt%rcell_volume * coeff &
1255 * atom(iatom)%species%get_zval() * atom(jatom)%species%get_zval() &
1256 * cos_gx / gg_abs * (factor1 + factor2)
1257
1258 do idir = 1, 2
1259 stress_ewald(idir, idir) = stress_ewald(idir, idir) + e_ewald
1260 end do
1261
1262 end do !jatom
1263 end do !iatom
1264 end do !iy
1265 end do !ix
1266
1267 !call comm_allreduce(this%dist%mpi_grp, stress_Ewald)
1268
1269 stress_ewald = stress_ewald / latt%rcell_volume
1270
1271 pop_sub(ewald_2d_stress)
1272 end subroutine ewald_2d_stress
1273
1274 ! ---------------------------------------------------------
1276 real(real64) function screening_function_2d(alpha, z_ij, gg_abs, erfc) result(factor)
1277 real(real64), intent(in) :: alpha
1278 real(real64), intent(in) :: z_ij
1279 real(real64), intent(in) :: gg_abs
1280 real(real64), intent(out) :: erfc
1281
1282 real(real64) :: arg
1283
1284 arg = -alpha*z_ij + m_half*gg_abs/alpha
1285 erfc = m_one - loct_erf(arg)
1286 factor = m_two*alpha*(m_one/gg_abs + z_ij)*erfc - m_two/sqrt(m_pi)*exp(-arg**2)
1287 factor = factor*exp(-gg_abs*z_ij)
1288
1289 end function screening_function_2d
1290
1291 ! ---------------------------------------------------------
1292
1293 subroutine ion_interaction_test(space, latt, atom, natoms, pos, lsize, &
1294 namespace, mc)
1295 class(space_t), intent(in) :: space
1296 type(lattice_vectors_t), intent(in) :: latt
1297 type(atom_t), intent(in) :: atom(:)
1298 integer, intent(in) :: natoms
1299 real(real64), intent(in) :: pos(1:space%dim,1:natoms)
1300 real(real64), intent(in) :: lsize(:)
1301 type(namespace_t), intent(in) :: namespace
1302 type(multicomm_t), intent(in) :: mc
1303
1304 type(ion_interaction_t) :: ion_interaction
1305 real(real64) :: energy
1306 real(real64), allocatable :: force(:, :), force_components(:, :, :)
1307 real(real64) :: energy_components(1:ION_NUM_COMPONENTS)
1308 integer :: iatom, idir
1309
1310 push_sub(ion_interaction_test)
1311
1312 call ion_interaction_init(ion_interaction, namespace, space, natoms)
1313 call ion_interaction_init_parallelization(ion_interaction, natoms, mc)
1314
1315 safe_allocate(force(1:space%dim, 1:natoms))
1316 safe_allocate(force_components(1:space%dim, 1:natoms, 1:ion_num_components))
1317
1318 call ion_interaction_calculate(ion_interaction, space, latt, atom, natoms, pos, lsize, energy, force, &
1319 energy_components = energy_components, force_components = force_components)
1320
1321 call messages_write('Ionic energy =')
1322 call messages_write(energy, fmt = '(f20.10)')
1323 call messages_info(namespace=namespace)
1324
1325 call messages_write('Real space energy =')
1326 call messages_write(energy_components(ion_component_real), fmt = '(f20.10)')
1327 call messages_info(namespace=namespace)
1328
1329 call messages_write('Self energy =')
1330 call messages_write(energy_components(ion_component_self), fmt = '(f20.10)')
1331 call messages_info(namespace=namespace)
1332
1333 call messages_write('Fourier energy =')
1334 call messages_write(energy_components(ion_component_fourier), fmt = '(f20.10)')
1335 call messages_info(namespace=namespace)
1336
1337 call messages_info(namespace=namespace)
1338
1339 do iatom = 1, natoms
1340 call messages_write('Ionic force atom')
1341 call messages_write(iatom)
1342 call messages_write(' =')
1343 do idir = 1, space%dim
1344 call messages_write(force(idir, iatom), fmt = '(f20.10)')
1345 end do
1346 call messages_info(namespace=namespace)
1347
1348 call messages_write('Real space force atom')
1349 call messages_write(iatom)
1350 call messages_write(' =')
1351 do idir = 1, space%dim
1352 call messages_write(force_components(idir, iatom, ion_component_real), fmt = '(f20.10)')
1353 end do
1354 call messages_info(namespace=namespace)
1355
1356 call messages_write('Fourier space force atom')
1357 call messages_write(iatom)
1358 call messages_write(' =')
1359 do idir = 1, space%dim
1360 call messages_write(force_components(idir, iatom, ion_component_fourier), fmt = '(f20.10)')
1361 end do
1362 call messages_info(namespace=namespace)
1363
1364 call messages_info(namespace=namespace)
1365 end do
1366
1367 safe_deallocate_a(force)
1368 safe_deallocate_a(force_components)
1370 call ion_interaction_end(ion_interaction)
1371
1372 pop_sub(ion_interaction_test)
1373 end subroutine ion_interaction_test
1374
1375end module ion_interaction_oct_m
1376
1377!! Local Variables:
1378!! mode: f90
1379!! coding: utf-8
1380!! End:
double exp(double __x) __attribute__((__nothrow__
double sin(double __x) __attribute__((__nothrow__
double sqrt(double __x) __attribute__((__nothrow__
double cos(double __x) __attribute__((__nothrow__
pure logical function, public all_species_are_jellium_slab(atom)
Check if all species are jellium slab.
Definition: atom.F90:292
pure logical function, public any_species_is_jellium_sphere(atom)
Check if any species is a jellium sphere.
Definition: atom.F90:309
type(debug_t), save, public debug
Definition: debug.F90:156
subroutine, public distributed_end(this)
subroutine, public distributed_nullify(this, total)
subroutine, public distributed_init(this, total, comm, tag, scalapack_compat)
Distribute N instances across M processes of communicator comm
real(real64), parameter, public m_two
Definition: global.F90:190
real(real64), parameter, public m_max_exp_arg
Definition: global.F90:208
real(real64), parameter, public m_zero
Definition: global.F90:188
real(real64), parameter, public m_four
Definition: global.F90:192
real(real64), parameter, public m_pi
some mathematical constants
Definition: global.F90:186
real(real64), parameter, public m_fourth
Definition: global.F90:197
complex(real64), parameter, public m_z0
Definition: global.F90:198
complex(real64), parameter, public m_zi
Definition: global.F90:202
real(real64), parameter, public r_min_atom_dist
Minimal distance between two distinguishable atoms.
Definition: global.F90:183
real(real64), parameter, public m_epsilon
Definition: global.F90:204
real(real64), parameter, public m_half
Definition: global.F90:194
real(real64), parameter, public m_one
Definition: global.F90:189
real(real64), parameter, public m_three
Definition: global.F90:191
real(real64), parameter, public m_five
Definition: global.F90:193
real(real64) function screening_function_2d(alpha, z_ij, gg_abs, erfc)
Auxiliary function for the Ewald 2D stress.
subroutine, public ion_interaction_stress(this, space, latt, atom, natoms, pos, stress_ii)
Computes the contribution to the stress tensor the ion-ion energy.
subroutine, public ion_interaction_init_parallelization(this, natoms, mc)
integer, parameter ion_component_self
real(real64) function jellium_slab_energy_periodic(space, atom, lsize)
Electrostatic energy of a periodic jellium slab.
subroutine, public ion_interaction_test(space, latt, atom, natoms, pos, lsize, namespace, mc)
subroutine ewald_long_2d(this, space, latt, atom, natoms, pos, efourier, force)
Computes the long-range part of the 2D Ewald summation.
subroutine ion_interaction_stress_short(this, space, latt, atom, natoms, pos, stress_short)
Computes the short-range contribution to the stress tensor the ion-ion energy.
subroutine ion_interaction_periodic(this, space, latt, atom, natoms, pos, energy, force, energy_components, force_components)
Total Ewald electrostatic energy and forces, for 1D, 2D and 3D systems.
real(real64) function jellium_self_energy_finite(dist, latt, atom, lsize)
Electrostatic self-interaction for jellium instances, with orthogonal cells.
subroutine, public ion_interaction_init(this, namespace, space, natoms)
subroutine ewald_short(dist, space, latt, atom, pos, alpha, ereal, force)
Short range component of the Ewald electrostatic energy and force.
subroutine pseudopotential_correction_3d(dist, latt, atom, charge, epseudo)
G=0 component of Ewald energy arising from the pseudopotentials, for 3D systems.
subroutine ewald_long_3d(this, space, latt, atom, natoms, pos, efourier, force, charge)
Computes the long-range part of the 3D Ewald summation.
integer, parameter ion_component_real
integer, parameter ion_num_components
subroutine ewald_3d_stress(this, space, latt, atom, natoms, pos, stress_Ewald)
Computes the contribution to the stress tensor from the 3D Ewald sum.
integer, parameter ion_component_fourier
subroutine ion_interaction_finite(dist, space, atom, pos, lsize, energy, force)
Electrostatic Ewald energy and forces for finite systems.
subroutine, public ion_interaction_end(this)
subroutine, public ion_interaction_calculate(this, space, latt, atom, natoms, pos, lsize, energy, force, energy_components, force_components)
Top level routine for computing electrostatic energies and forces between ions.
subroutine ewald_2d_stress(this, space, latt, atom, natoms, pos, stress_Ewald)
Computes the contribution to the stress tensor from the 2D Ewald sum.
subroutine ewald_self_interaction(dist, atom, alpha, eself, charge)
@ brief Ewald self-interaction energy
subroutine, public kpoints_to_absolute(latt, kin, kout)
Definition: kpoints.F90:1031
subroutine, public messages_not_implemented(feature, namespace)
Definition: messages.F90:1113
subroutine, public messages_warning(no_lines, all_nodes, namespace)
Definition: messages.F90:537
This module handles the communicators for the various parallelization strategies.
Definition: multicomm.F90:145
subroutine, public profiling_out(label)
Increment out counter and sum up difference between entry and exit time.
Definition: profiling.F90:623
subroutine, public profiling_in(label, exclude)
Increment in counter and save entry time.
Definition: profiling.F90:552
Definition: ps.F90:114
static double f(double w, void *p)
Distribution of N instances over mpi_grpsize processes, for the local rank mpi_grprank....
The following class implements a lattice iterator. It allows one to loop over all cells that are with...
An abstract class for species. Derived classes include jellium, all electron, and pseudopotential spe...
Definition: species.F90:143
int true(void)