Octopus
stress_oct_m Module Reference

This module implements the calculation of the stress tensor. More...

Detailed Description

This module implements the calculation of the stress tensor.

Functions/Subroutines

subroutine, public stress_calculate (namespace, gr, hm, st, ions, ks, ext_partners)
 This computes the total stress on the lattice. More...
 
subroutine stress_from_kinetic (gr, space, hm, st, symm, rcell_volume, stress_kin)
 Computes the contribution to the stress tensor from the kinetic energy. More...
 
subroutine stress_from_hartree (gr, space, volume, vh, grad_vh, ehartree, stress_Hartree)
 Computes the contribution to the stress tensor from the Hartree energy. More...
 
subroutine stress_from_xc (energy, rcell_volume, periodic_dim, stress_xc)
 Computes the contribution to the stress tensor from the xc energy. More...
 
subroutine stress_from_xc_nlcc (rcell_volume, gr, st, ions, vxc, stress_xc_nlcc)
 Computes the NLCC contribution to the stress tensor from the xc energy. More...
 
subroutine stress_from_pseudo_nonloc (gr, st, hm, ions, stress_ps_nl)
 Computes the contribution to the stress tensor from the nonlocal part of the pseudopotentials. More...
 
subroutine stress_from_pseudo_local (gr, st, hm, ions, rho_total, vh, grad_vh, stress_ps_local)
 Computes the contribution from the local part of the pseudopotential. More...
 
subroutine epot_local_pseudopotential_sr (mesh, ions, iatom, vpsl, rvpsl)
 
subroutine stress_from_hubbard (namespace, gr, st, hm, space, rcell_volume, stress_hubbard)
 Computes the contribution to the stress tensor from the Hubbard energy. More...
 
subroutine, public output_stress (iunit, space_dim, stress_tensors, all_terms)
 
subroutine, public output_pressure (iunit, space_dim, total_stress_tensor)
 
subroutine print_stress_tensor (ounit, space_dim, tensor)
 

Function/Subroutine Documentation

◆ stress_calculate()

subroutine, public stress_oct_m::stress_calculate ( type(namespace_t), intent(in)  namespace,
type(grid_t), intent(inout)  gr,
type(hamiltonian_elec_t), intent(inout)  hm,
type(states_elec_t), intent(inout), target  st,
type(ions_t), intent(inout)  ions,
type(v_ks_t), intent(in)  ks,
type(partner_list_t), intent(in)  ext_partners 
)

This computes the total stress on the lattice.

Parameters
[in,out]grgrid
[in,out]hmthe Hamiltonian
[in,out]stthe electronic states
[in,out]ionsgeometry
[in]ksthe Kohn-Sham system
[in]ext_partnersexternal interaction partners

Definition at line 183 of file stress.F90.

◆ stress_from_kinetic()

subroutine stress_oct_m::stress_from_kinetic ( type(grid_t), intent(in)  gr,
class(space_t), intent(in)  space,
type(hamiltonian_elec_t), intent(in)  hm,
type(states_elec_t), intent(inout)  st,
type(symmetries_t), intent(in)  symm,
real(real64), intent(in)  rcell_volume,
real(real64), dimension(3, 3), intent(out)  stress_kin 
)
private

Computes the contribution to the stress tensor from the kinetic energy.

We use the real space formula from Sharma and Suryanarayana On the calculation of the stress tensor in real-space Kohn-Sham density functional theory J. Chem. Phys. 149, 194104 (2018)

More precisely, this routines computes

\[ \sigma_{ij} = \frac{1}{V}\sum_n\sum_k^{BZ} w_kf_{n,k}\int d^3r \partial_i \psi^*_{n,k}(r) \partial_j \psi_{n,k}(r)\, \]

where \(V\) is the cell volume, \( w_k\) is the weight of the k-point k, \( f_{n,k}\) is the occupation number of the band with a k-point index k, and \( \psi_{n,k}\) is the corresponding Bloch state.

Definition at line 409 of file stress.F90.

◆ stress_from_hartree()

subroutine stress_oct_m::stress_from_hartree ( type(grid_t), intent(in)  gr,
class(space_t), intent(in)  space,
real(real64), intent(in)  volume,
real(real64), dimension(:), intent(in)  vh,
real(real64), dimension(:,:), intent(in)  grad_vh,
real(real64), intent(in)  ehartree,
real(real64), dimension(3, 3), intent(out)  stress_Hartree 
)
private

Computes the contribution to the stress tensor from the Hartree energy.

We use the real space formula from Sharma and Suryanarayana On the calculation of the stress tensor in real-space Kohn-Sham density functional theory J. Chem. Phys. 149, 194104 (2018)

More precisely, this routines computes

\[ \sigma_{ij} = \frac{1}{4\pi V}\int d^3r \partial_i v_{\rm H}(r) \partial_j v_{\rm H}(r) - \delta_{ij} \frac{1}{V}E_{\rm H}\, \]

where \(V\) is the cell volume, \( v_{\rm H}(r) \) is the Hartree potential, and \( E_{\rm H} \) is the Hartree energy defined as

\[ E_{\rm H} = \frac{1}{2} \int d^3r n(r) v_{\rm H}(r) \,. \]

Parameters
[in]vhHartree potential
[in]grad_vhGradient of the Hartree potential
[in]ehartreeHartree U = (1/2)*Int [n v_Hartree]

Definition at line 498 of file stress.F90.

◆ stress_from_xc()

subroutine stress_oct_m::stress_from_xc ( type(energy_t), intent(in)  energy,
real(real64), intent(in)  rcell_volume,
integer, intent(in)  periodic_dim,
real(real64), dimension(3, 3), intent(out)  stress_xc 
)
private

Computes the contribution to the stress tensor from the xc energy.

This routines computes the xc stress tensor assuming an LDA functional

\[ \sigma_{ij} = \frac{1}{V}\delta_{ij}(-\int d^3r n(r) v_{\rm xc}(r) + E_{\rm xc})\, \]

where \(V\) is the cell volume, \(n(r) \) is the electronic density, \( v_{\rm xc}(r) \) is the exchange-correlation potential, and \( E_{\rm xc} \) is the exchange-correlation energy.

The GGA extra term is computed alongside with the calculation of the xc potential, in the routine xc_get_vxc.

Definition at line 547 of file stress.F90.

◆ stress_from_xc_nlcc()

subroutine stress_oct_m::stress_from_xc_nlcc ( real(real64), intent(in)  rcell_volume,
type(grid_t), intent(in)  gr,
type(states_elec_t), intent(in)  st,
type(ions_t), intent(in)  ions,
real(real64), dimension(:,:), intent(in)  vxc,
real(real64), dimension(3, 3), intent(out)  stress_xc_nlcc 
)
private

Computes the NLCC contribution to the stress tensor from the xc energy.

The nonlinear core correction term is given by

\[ \sigma_{ij}^{\rm NLCC} = \frac{1}{V}\int d^3r v_{xc}(r) \frac{\partial \rho_{\rm NLCC}(\epsilon r)}{\partial \epsilon_{ij}}\Bigg|_{\epsilon=I}\,. \]

Definition at line 576 of file stress.F90.

◆ stress_from_pseudo_nonloc()

subroutine stress_oct_m::stress_from_pseudo_nonloc ( type(grid_t), intent(in), target  gr,
type(states_elec_t), intent(inout)  st,
type(hamiltonian_elec_t), intent(in)  hm,
type(ions_t), intent(in)  ions,
real(real64), dimension(3, 3), intent(out)  stress_ps_nl 
)
private

Computes the contribution to the stress tensor from the nonlocal part of the pseudopotentials.

More precisely, this routines computes

\[ \sigma_{ij} = \frac{2}{V}\sum_n\sum_k^{BZ} \sum_I w_kf_{n,k} \langle \partial_i \psi_{n,k}| (r_j-R_j) \hat{V}_{\rm NL,I}| \psi_{n,k}\rangle + \delta_{ij} \frac{1}{V}E_{\rm NL} \]

where \(V\) is the cell volume, \( w_k\) is the weight of the k-point k, \( f_{n,k}\) is the occupation number of the band with a k-point index k, \( \psi_{n,k}\) is the corresponding Bloch state, and \( \hat{V}_{\rm NL, I}\) is the pseudopotential non-local operator from atom I, centered on the position \(R_I\). \( E_{\rm NL} \) is the nonlocal energy from the nonlocal pseudopotential.

See Sharma and Suryanarayana, On the calculation of the stress tensor in real-space Kohn-Sham density functional theory, J. Chem. Phys. 149, 194104 (2018) for more details

Parameters
[in]grgrid

Definition at line 649 of file stress.F90.

◆ stress_from_pseudo_local()

subroutine stress_oct_m::stress_from_pseudo_local ( type(grid_t), intent(in), target  gr,
type(states_elec_t), intent(inout)  st,
type(hamiltonian_elec_t), intent(in)  hm,
type(ions_t), intent(in)  ions,
real(real64), dimension(:), intent(inout), contiguous  rho_total,
real(real64), dimension(:), intent(in)  vh,
real(real64), dimension(:,:), intent(in)  grad_vh,
real(real64), dimension(3, 3), intent(out)  stress_ps_local 
)
private

Computes the contribution from the local part of the pseudopotential.

We use a real space formulation, which computes two parts. One short range (SR)

\[ \sigma_{ij} =\frac{1}{V} \sum_I\int d^3r [\partial_i \rho(r)] (x_j-R_{I,j}) v_{\rm SR, I}(r) + \delta_{ij} \frac{1}{V}E_{\rm loc, SR}\, \]

and a long range part

\[ \sigma_{ij} = \frac{1}{V}\int d\vec{x} \sum_I n_{\rm LR}^{I}(|\vec{x}-\vec{R}_I|) (x_j-R_{I,j}) [\partial_i v_H(\vec{x})] + \delta_{ij} \frac{1}{V} E_{\rm loc, LR} -\frac{2}{4\pi V}\int d\vec{r} [\partial_i v_{\rm H}(\vec{r})][\partial_j v_{\rm LR}(\vec{r})] \]

where \(V\) is the cell volume, \( v_{\rm H}(r) \) is the Hartree potential, \(\vec{R}_I\) refers to the position of the atom \(I\), and \(n_{\rm LR}^{I}\) is the long-range density associated with the long-range potential \(v_{\rm LR}^I\).

Parameters
[in]grgrid
[in]vhHartree potential
[in]grad_vhGradient of the Hartree potential

Definition at line 755 of file stress.F90.

◆ epot_local_pseudopotential_sr()

subroutine stress_oct_m::epot_local_pseudopotential_sr ( class(mesh_t), intent(in)  mesh,
type(ions_t), intent(in)  ions,
integer, intent(in)  iatom,
real(real64), dimension(:), intent(inout)  vpsl,
real(real64), dimension(:,:), intent(inout)  rvpsl 
)
private

Definition at line 894 of file stress.F90.

◆ stress_from_hubbard()

subroutine stress_oct_m::stress_from_hubbard ( type(namespace_t), intent(in)  namespace,
type(grid_t), intent(in), target  gr,
type(states_elec_t), intent(inout)  st,
type(hamiltonian_elec_t), intent(in)  hm,
type(space_t), intent(in)  space,
real(real64), intent(in)  rcell_volume,
real(real64), dimension(3, 3), intent(out)  stress_hubbard 
)
private

Computes the contribution to the stress tensor from the Hubbard energy.

More precisely, this routine computes

\[ \sigma^{U}_{\alpha\beta} = \delta_{\alpha\beta} E_{\rm Hubbard} - \frac{2}{V} \sum_{n} \sum_{\mathbf{k}}^{BZ} w_k \Re\Bigg\{ \langle [\partial_\alpha \psi^*_{n\mathbf{k}}(\mathbf{r})] | (\mathbf{r}-\mathbf{R}_J)_\beta \hat{V}_U n_\mathbf{k}\rangle\Bigg\} \]

where \(V\) is the cell volume, \( w_k\) is the weight of the k-point k, \( \psi_{n,\mathbf{k}}\) is the corresponding Bloch state, and \( \hat{V}_{U}\) is the Hubbard potential and \( E_{\rm Hubbard} \) is the Hubbard energy.

Parameters
[in]grgrid

Definition at line 958 of file stress.F90.

◆ output_stress()

subroutine, public stress_oct_m::output_stress ( integer, intent(in)  iunit,
integer, intent(in)  space_dim,
type(stress_t), intent(in)  stress_tensors,
logical, intent(in), optional  all_terms 
)
Parameters
[in]all_termsif yes, writes each contributing term separately

Definition at line 1052 of file stress.F90.

◆ output_pressure()

subroutine, public stress_oct_m::output_pressure ( integer, intent(in)  iunit,
integer, intent(in)  space_dim,
real(real64), dimension(3,3), intent(in)  total_stress_tensor 
)

Definition at line 1114 of file stress.F90.

◆ print_stress_tensor()

subroutine stress_oct_m::print_stress_tensor ( integer, intent(in)  ounit,
integer, intent(in)  space_dim,
real(real64), dimension(3,3), intent(in)  tensor 
)
private

Definition at line 1143 of file stress.F90.