38 use,
intrinsic :: iso_fortran_env
104 logical :: calculating
105 logical :: time_present
107 real(real64),
allocatable :: density(:, :)
108 logical :: total_density_alloc
109 real(real64),
pointer,
contiguous :: total_density(:)
110 type(energy_t),
allocatable :: energy
112 type(states_elec_t),
pointer :: hf_st
117 real(real64),
allocatable :: vxc(:, :)
118 real(real64),
allocatable :: vtau(:, :)
119 real(real64),
allocatable :: axc(:, :, :)
120 real(real64),
allocatable :: a_ind(:, :)
121 real(real64),
allocatable :: b_ind(:, :)
122 logical :: calc_energy
127 integer,
public :: theory_level = -1
129 logical,
public :: frozen_hxc = .false.
131 integer,
public :: xc_family = 0
132 integer,
public :: xc_flags = 0
133 integer,
public :: xc_photon = 0
134 type(xc_t),
public :: xc
135 type(xc_photons_t),
public :: xc_photons
136 type(xc_oep_t),
public :: oep
137 type(xc_oep_photon_t),
public :: oep_photon
138 type(xc_ks_inversion_t),
public :: ks_inversion
139 type(xc_sic_t),
public :: sic
140 type(xc_vdw_t),
public :: vdw
141 type(grid_t),
pointer,
public :: gr
142 type(v_ks_calc_t) :: calc
143 logical :: calculate_current = .false.
144 type(current_t) :: current_calculator
145 logical :: include_td_field = .false.
146 logical,
public :: has_photons = .false.
147 logical :: xc_photon_include_hartree = .
true.
149 real(real64),
public :: stress_xc_gga(3, 3)
150 type(photon_mode_t),
pointer,
public :: pt => null()
151 type(mf_t),
public :: pt_mx
157 subroutine v_ks_init(ks, namespace, gr, st, ions, mc, space, kpoints)
158 type(v_ks_t),
intent(inout) :: ks
159 type(namespace_t),
intent(in) :: namespace
160 type(grid_t),
target,
intent(inout) :: gr
161 type(states_elec_t),
intent(in) :: st
162 type(ions_t),
intent(inout) :: ions
163 type(multicomm_t),
intent(in) :: mc
164 class(space_t),
intent(in) :: space
165 type(kpoints_t),
intent(in) :: kpoints
167 integer :: x_id, c_id, xk_id, ck_id, default, val
168 logical :: parsed_theory_level, using_hartree_fock
169 integer :: pseudo_x_functional, pseudo_c_functional
212 ks%xc_family = xc_family_none
218 parsed_theory_level = .false.
225 parsed_theory_level = .
true.
239 call messages_write(
'Info: the XCFunctional has been selected to match the pseudopotentials', new_line = .
true.)
254 call messages_write(
'The XCFunctional that you selected does not match the one used', new_line = .
true.)
303 call parse_variable(namespace,
'XCPhotonFunctional', option__xcphotonfunctional__none, ks%xc_photon)
313 call parse_variable(namespace,
'XCPhotonIncludeHartree', .
true., ks%xc_photon_include_hartree)
315 if (.not. ks%xc_photon_include_hartree)
then
326 using_hartree_fock = (ks%theory_level ==
hartree_fock) &
328 call xc_init(ks%xc, namespace, space%dim, space%periodic_dim, st%qtot, &
329 x_id, c_id, xk_id, ck_id,
hartree_fock = using_hartree_fock, ispin=st%d%ispin)
331 ks%xc_family = ks%xc%family
332 ks%xc_flags = ks%xc%flags
334 if (.not. parsed_theory_level)
then
343 call parse_variable(namespace,
'TheoryLevel', default, ks%theory_level)
355 ks%xc_family = ior(ks%xc_family, xc_family_oep)
365 ks%sic%amaldi_factor =
m_one
367 select case (ks%theory_level)
372 if (space%periodic_dim == space%dim)
then
375 if (kpoints%full%npoints > 1)
then
380 if (kpoints%full%npoints > 1)
then
395 if (
bitand(ks%xc_family, xc_family_lda + xc_family_gga) /= 0)
then
396 call xc_sic_init(ks%sic, namespace, gr, st, mc, space)
399 if (
bitand(ks%xc_family, xc_family_oep) /= 0)
then
400 select case (ks%xc%functional(
func_x,1)%id)
402 if (kpoints%reduced%npoints > 1)
then
407 if (kpoints%reduced%npoints > 1)
then
412 if((.not. ks%has_photons) .or. (ks%xc_photon /= 0))
then
413 if(oep_type == -1)
then
416 call xc_oep_init(ks%oep, namespace, gr, st, mc, space, oep_type)
430 message(1) =
"SICCorrection can only be used with Kohn-Sham DFT"
434 if (st%d%ispin ==
spinors)
then
435 if (
bitand(ks%xc_family, xc_family_mgga + xc_family_hyb_mgga) /= 0)
then
440 ks%frozen_hxc = .false.
445 ks%calc%calculating = .false.
450 call ks%vdw%init(namespace, space, gr, ks%xc, ions, x_id, c_id)
451 if (ks%vdw%vdw_correction /= option__vdwcorrection__none .and. ks%theory_level ==
rdmft)
then
452 message(1) =
"VDWCorrection and RDMFT are not compatible"
455 if (ks%vdw%vdw_correction /= option__vdwcorrection__none .and. ks%theory_level ==
independent_particles)
then
456 message(1) =
"VDWCorrection and independent particles are not compatible"
460 if (ks%xc_photon /= 0)
then
462 call ks%xc_photons%init(namespace, ks%xc_photon , space, gr, st)
474 integer,
intent(out) :: x_functional
475 integer,
intent(out) :: c_functional
477 integer :: xf, cf, ispecies
478 logical :: warned_inconsistent
483 warned_inconsistent = .false.
484 do ispecies = 1, ions%nspecies
485 select type(spec=>ions%species(ispecies)%s)
487 xf = spec%x_functional()
488 cf = spec%c_functional()
491 call messages_write(
"Unknown XC functional for species '"//trim(ions%species(ispecies)%s%get_label())//
"'")
499 if (xf /= x_functional .and. .not. warned_inconsistent)
then
500 call messages_write(
'Inconsistent XC functional detected between species')
502 warned_inconsistent = .
true.
509 if (cf /= c_functional .and. .not. warned_inconsistent)
then
510 call messages_write(
'Inconsistent XC functional detected between species')
512 warned_inconsistent = .
true.
532 type(
v_ks_t),
intent(inout) :: ks
538 select case (ks%theory_level)
543 if (
bitand(ks%xc_family, xc_family_oep) /= 0)
then
553 if (ks%xc_photon /= 0)
then
554 call ks%xc_photons%end()
564 type(
v_ks_t),
intent(in) :: ks
565 integer,
optional,
intent(in) :: iunit
566 type(
namespace_t),
optional,
intent(in) :: namespace
573 select case (ks%theory_level)
598 subroutine v_ks_h_setup(namespace, space, gr, ions, ext_partners, st, ks, hm, calc_eigenval, calc_current)
601 type(
grid_t),
intent(in) :: gr
602 type(
ions_t),
intent(in) :: ions
605 type(
v_ks_t),
intent(inout) :: ks
607 logical,
optional,
intent(in) :: calc_eigenval
608 logical,
optional,
intent(in) :: calc_current
610 integer,
allocatable :: ind(:)
612 real(real64),
allocatable :: copy_occ(:)
613 logical :: calc_eigenval_
614 logical :: calc_current_
622 call v_ks_calc(ks, namespace, space, hm, st, ions, ext_partners, &
623 calc_eigenval = calc_eigenval_, calc_current = calc_current_)
625 if (st%restart_reorder_occs .and. .not. st%fromScratch)
then
626 message(1) =
"Reordering occupations for restart."
629 safe_allocate(ind(1:st%nst))
630 safe_allocate(copy_occ(1:st%nst))
633 call sort(st%eigenval(:, ik), ind)
634 copy_occ(1:st%nst) = st%occ(1:st%nst, ik)
636 st%occ(ist, ik) = copy_occ(ind(ist))
640 safe_deallocate_a(ind)
641 safe_deallocate_a(copy_occ)
651 subroutine v_ks_calc(ks, namespace, space, hm, st, ions, ext_partners, &
652 calc_eigenval, time, calc_energy, calc_current, force_semilocal)
653 type(
v_ks_t),
intent(inout) :: ks
660 logical,
optional,
intent(in) :: calc_eigenval
661 real(real64),
optional,
intent(in) :: time
662 logical,
optional,
intent(in) :: calc_energy
663 logical,
optional,
intent(in) :: calc_current
664 logical,
optional,
intent(in) :: force_semilocal
666 logical :: calc_current_
671 .and. ks%calculate_current &
675 if (calc_current_)
then
680 call v_ks_calc_start(ks, namespace, space, hm, st, ions, hm%kpoints%latt, ext_partners, time, &
681 calc_energy, force_semilocal=force_semilocal)
683 ext_partners, force_semilocal=force_semilocal)
694 call lalg_axpy(ks%gr%np, st%d%nspin,
m_one, hm%magnetic_constrain%pot, hm%ks_pot%vhxc)
706 subroutine v_ks_calc_start(ks, namespace, space, hm, st, ions, latt, ext_partners, time, &
707 calc_energy, force_semilocal)
708 type(
v_ks_t),
target,
intent(inout) :: ks
710 class(
space_t),
intent(in) :: space
713 type(
ions_t),
intent(in) :: ions
716 real(real64),
optional,
intent(in) :: time
717 logical,
optional,
intent(in) :: calc_energy
718 logical,
optional,
intent(in) :: force_semilocal
724 assert(.not. ks%calc%calculating)
725 ks%calc%calculating = .
true.
727 write(
message(1),
'(a)')
'Debug: Calculating Kohn-Sham potential.'
730 ks%calc%time_present =
present(time)
736 if (ks%frozen_hxc)
then
742 allocate(ks%calc%energy)
748 nullify(ks%calc%total_density)
758 if (ks%theory_level /=
hartree .and. ks%theory_level /=
rdmft)
call v_a_xc(hm, force_semilocal)
760 ks%calc%total_density_alloc = .false.
767 nullify(ks%calc%hf_st)
772 if (st%parallel_in_states)
then
774 call messages_write(
'State parallelization of Hartree-Fock exchange is not supported')
776 call messages_write(
'when running with OpenCL/CUDA. Please use domain parallelization')
778 call messages_write(
"or disable acceleration using 'DisableAccel = yes'.")
783 if (hm%exxop%useACE)
then
786 safe_allocate(ks%calc%hf_st)
796 if (hm%self_induced_magnetic)
then
797 safe_allocate(ks%calc%a_ind(1:ks%gr%np_part, 1:space%dim))
798 safe_allocate(ks%calc%b_ind(1:ks%gr%np_part, 1:space%dim))
799 call magnetic_induced(namespace, ks%gr, st, hm%psolver, hm%kpoints, ks%calc%a_ind, ks%calc%b_ind)
802 if ((ks%has_photons) .and. (ks%calc%time_present) .and. (ks%xc_photon == 0) )
then
803 call mf_calc(ks%pt_mx, ks%gr, st, ions, ks%pt, time)
821 safe_allocate(ks%calc%density(1:ks%gr%np, 1:st%d%nspin))
826 call lalg_scal(ks%gr%np, st%d%nspin, ks%sic%amaldi_factor, ks%calc%density)
829 nullify(ks%calc%total_density)
830 if (
allocated(st%rho_core) .or. hm%d%spin_channels > 1)
then
831 ks%calc%total_density_alloc = .
true.
833 safe_allocate(ks%calc%total_density(1:ks%gr%np))
836 ks%calc%total_density(ip) = sum(ks%calc%density(ip, 1:hm%d%spin_channels))
840 if (
allocated(st%rho_core))
then
841 call lalg_axpy(ks%gr%np, -ks%sic%amaldi_factor, st%rho_core, ks%calc%total_density)
844 ks%calc%total_density_alloc = .false.
845 ks%calc%total_density => ks%calc%density(:, 1)
852 subroutine v_a_xc(hm, force_semilocal)
854 logical,
optional,
intent(in) :: force_semilocal
861 ks%calc%energy%exchange =
m_zero
862 ks%calc%energy%correlation =
m_zero
863 ks%calc%energy%xc_j =
m_zero
864 ks%calc%energy%vdw =
m_zero
866 allocate(ks%calc%vxc(1:ks%gr%np, 1:st%d%nspin))
870 safe_allocate(ks%calc%vtau(1:ks%gr%np, 1:st%d%nspin))
875 if (ks%calc%calc_energy)
then
877 call xc_get_vxc(ks%gr, ks%xc, st, hm%kpoints, hm%psolver, namespace, space, ks%calc%density, st%d%ispin, &
878 latt%rcell_volume, ks%calc%vxc, ex = ks%calc%energy%exchange, ec = ks%calc%energy%correlation, &
879 deltaxc = ks%calc%energy%delta_xc, vtau = ks%calc%vtau, force_orbitalfree=force_semilocal)
881 call xc_get_vxc(ks%gr, ks%xc, st, hm%kpoints, hm%psolver, namespace, space, ks%calc%density, st%d%ispin, &
882 latt%rcell_volume, ks%calc%vxc, ex = ks%calc%energy%exchange, ec = ks%calc%energy%correlation, &
883 deltaxc = ks%calc%energy%delta_xc, stress_xc=ks%stress_xc_gga, force_orbitalfree=force_semilocal)
887 call xc_get_vxc(ks%gr, ks%xc, st, hm%kpoints, hm%psolver, namespace, space, ks%calc%density, &
888 st%d%ispin, latt%rcell_volume, ks%calc%vxc, vtau = ks%calc%vtau, force_orbitalfree=force_semilocal)
890 call xc_get_vxc(ks%gr, ks%xc, st, hm%kpoints, hm%psolver, namespace, space, ks%calc%density, &
891 st%d%ispin, latt%rcell_volume, ks%calc%vxc, stress_xc=ks%stress_xc_gga, force_orbitalfree=force_semilocal)
897 if (st%d%ispin /=
spinors)
then
898 message(1) =
"Noncollinear functionals can only be used with spinor wavefunctions."
903 message(1) =
"Cannot perform LCAO for noncollinear MGGAs."
904 message(2) =
"Please perform a LDA calculation first."
908 if (ks%calc%calc_energy)
then
910 call xc_get_nc_vxc(ks%gr, ks%xc, st, hm%kpoints, space, namespace, ks%calc%density, ks%calc%vxc, &
911 vtau = ks%calc%vtau, ex = ks%calc%energy%exchange, ec = ks%calc%energy%correlation)
913 call xc_get_nc_vxc(ks%gr, ks%xc, st, hm%kpoints, space, namespace, ks%calc%density, ks%calc%vxc, &
914 ex = ks%calc%energy%exchange, ec = ks%calc%energy%correlation)
918 call xc_get_nc_vxc(ks%gr, ks%xc, st, hm%kpoints, space, namespace, ks%calc%density, &
919 ks%calc%vxc, vtau = ks%calc%vtau)
921 call xc_get_nc_vxc(ks%gr, ks%xc, st, hm%kpoints, space, namespace, ks%calc%density, ks%calc%vxc)
926 call ks%vdw%calc(namespace, space, latt, ions%atom, ions%natoms, ions%pos, &
927 ks%gr, st, ks%calc%energy%vdw, ks%calc%vxc)
940 if (ks%calc%calc_energy)
then
941 call xc_sic_calc_adsic(ks%sic, namespace, space, ks%gr, st, hm, ks%xc, ks%calc%density, &
942 ks%calc%vxc, ex = ks%calc%energy%exchange, ec = ks%calc%energy%correlation)
944 call xc_sic_calc_adsic(ks%sic, namespace, space, ks%gr, st, hm, ks%xc, ks%calc%density, &
956 call x_slater_calc(namespace, ks%gr, space, hm%exxop, st, hm%kpoints, ks%calc%energy%exchange, &
959 call x_fbe_calc(ks%xc%functional(
func_x,1)%id, namespace, hm%psolver, ks%gr, st, space, &
960 ks%calc%energy%exchange, vxc = ks%calc%vxc)
964 call fbe_c_lda_sl(namespace, hm%psolver, ks%gr, st, space, &
965 ks%calc%energy%correlation, vxc = ks%calc%vxc)
973 call xc_ks_inversion_calc(ks%ks_inversion, namespace, space, ks%gr, hm, ext_partners, st, vxc = ks%calc%vxc, &
978 if (ks%xc_photon /= 0)
then
980 call ks%xc_photons%v_ks(namespace, ks%calc%total_density, ks%gr, space, hm%psolver, hm%ep, st)
983 do ispin = 1, hm%d%spin_channels
984 call lalg_axpy(ks%gr%np,
m_one, ks%xc_photons%vpx(1:ks%gr%np), ks%calc%vxc(1:ks%gr%np, ispin) )
988 ks%calc%energy%photon_exchange = ks%xc_photons%ex
993 if (ks%calc%calc_energy)
then
1006 subroutine v_ks_calc_finish(ks, hm, namespace, space, latt, st, ext_partners, force_semilocal)
1007 type(
v_ks_t),
target,
intent(inout) :: ks
1010 class(
space_t),
intent(in) :: space
1014 logical,
optional,
intent(in) :: force_semilocal
1016 integer :: ip, ispin
1019 real(real64) :: exx_energy
1020 real(real64) :: factor
1024 assert(ks%calc%calculating)
1025 ks%calc%calculating = .false.
1027 if (ks%frozen_hxc)
then
1033 safe_deallocate_a(hm%energy)
1034 call move_alloc(ks%calc%energy, hm%energy)
1036 if (hm%self_induced_magnetic)
then
1037 hm%a_ind(1:ks%gr%np, 1:space%dim) = ks%calc%a_ind(1:ks%gr%np, 1:space%dim)
1038 hm%b_ind(1:ks%gr%np, 1:space%dim) = ks%calc%b_ind(1:ks%gr%np, 1:space%dim)
1040 safe_deallocate_a(ks%calc%a_ind)
1041 safe_deallocate_a(ks%calc%b_ind)
1044 if (
allocated(hm%v_static))
then
1045 hm%energy%intnvstatic =
dmf_dotp(ks%gr, ks%calc%total_density, hm%v_static)
1047 hm%energy%intnvstatic =
m_zero
1053 hm%energy%intnvxc =
m_zero
1054 hm%energy%hartree =
m_zero
1055 hm%energy%exchange =
m_zero
1056 hm%energy%exchange_hf =
m_zero
1057 hm%energy%correlation =
m_zero
1060 hm%energy%hartree =
m_zero
1061 call v_ks_hartree(namespace, ks, space, hm, ext_partners)
1067 call dxc_oep_calc(ks%sic%oep, namespace, ks%xc, ks%gr, hm, st, space, &
1068 latt%rcell_volume, hm%energy%exchange, hm%energy%correlation, vxc = ks%calc%vxc)
1070 call zxc_oep_calc(ks%sic%oep, namespace, ks%xc, ks%gr, hm, st, space, &
1071 latt%rcell_volume, hm%energy%exchange, hm%energy%correlation, vxc = ks%calc%vxc)
1080 call dxc_oep_calc(ks%oep, namespace, ks%xc, ks%gr, hm, st, space, &
1081 latt%rcell_volume, hm%energy%exchange, hm%energy%correlation, vxc = ks%calc%vxc)
1083 call zxc_oep_calc(ks%oep, namespace, ks%xc, ks%gr, hm, st, space, &
1084 latt%rcell_volume, hm%energy%exchange, hm%energy%correlation, vxc = ks%calc%vxc)
1093 hm, st, space, hm%energy%exchange, hm%energy%correlation, vxc = ks%calc%vxc)
1096 hm, st, space, hm%energy%exchange, hm%energy%correlation, vxc = ks%calc%vxc)
1098 hm%energy%photon_exchange = ks%oep_photon%pt%ex
1102 if (ks%calc%calc_energy)
then
1104 hm%energy%intnvxc =
m_zero
1107 do ispin = 1, hm%d%nspin
1108 if (ispin <= 2)
then
1113 hm%energy%intnvxc = hm%energy%intnvxc + &
1114 factor*
dmf_dotp(ks%gr, st%rho(:, ispin), ks%calc%vxc(:, ispin), reduce = .false.)
1116 call ks%gr%allreduce(hm%energy%intnvxc)
1121 if (ks%theory_level /=
hartree .and. ks%theory_level /=
rdmft)
then
1123 safe_deallocate_a(hm%ks_pot%vxc)
1124 call move_alloc(ks%calc%vxc, hm%ks_pot%vxc)
1127 call hm%ks_pot%set_vtau(ks%calc%vtau)
1128 safe_deallocate_a(ks%calc%vtau)
1134 hm%energy%intnvxc = hm%energy%intnvxc &
1137 hm%energy%intnvxc = hm%energy%intnvxc &
1147 if (.not. ks%xc_photon_include_hartree)
then
1148 hm%energy%hartree =
m_zero
1149 hm%ks_pot%vhartree =
m_zero
1155 hm%ks_pot%vhxc(ip, 1) = hm%ks_pot%vxc(ip, 1) + hm%ks_pot%vhartree(ip)
1157 if (
allocated(hm%vberry))
then
1159 hm%ks_pot%vhxc(ip, 1) = hm%ks_pot%vhxc(ip, 1) + hm%vberry(ip, 1)
1165 hm%ks_pot%vhxc(ip, 2) = hm%ks_pot%vxc(ip, 2) + hm%ks_pot%vhartree(ip)
1167 if (
allocated(hm%vberry))
then
1169 hm%ks_pot%vhxc(ip, 2) = hm%ks_pot%vhxc(ip, 2) + hm%vberry(ip, 2)
1174 if (hm%d%ispin ==
spinors)
then
1177 hm%ks_pot%vhxc(ip, ispin) = hm%ks_pot%vxc(ip, ispin)
1183 hm%energy%exchange_hf =
m_zero
1185 .or. ks%theory_level ==
rdmft &
1189 if (.not. hm%exxop%useACE)
then
1191 if (
associated(hm%exxop%st))
then
1194 safe_deallocate_p(hm%exxop%st)
1205 select case (ks%theory_level)
1219 if (hm%exxop%useACE)
then
1223 ks%calc%hf_st, xst, hm%kpoints)
1228 ks%calc%hf_st, xst, hm%kpoints)
1230 if (hm%phase%is_allocated())
then
1237 exx_energy = exx_energy + hm%exxop%singul%energy
1241 select case (ks%theory_level)
1244 hm%energy%exchange_hf = hm%energy%exchange_hf + exx_energy
1247 hm%energy%exchange_hf = hm%energy%exchange_hf + exx_energy
1265 if (ks%has_photons .and. (ks%xc_photon == 0))
then
1266 if (
associated(ks%pt_mx%vmf))
then
1267 forall(ip = 1:ks%gr%np) hm%ks_pot%vhxc(ip, 1) = hm%ks_pot%vhxc(ip, 1) + ks%pt_mx%vmf(ip)
1269 forall(ip = 1:ks%gr%np) hm%ks_pot%vhxc(ip, 2) = hm%ks_pot%vhxc(ip, 2) + ks%pt_mx%vmf(ip)
1272 hm%ep%photon_forces(1:space%dim) = ks%pt_mx%fmf(1:space%dim)
1275 if (ks%vdw%vdw_correction /= option__vdwcorrection__none)
then
1276 assert(
allocated(ks%vdw%forces))
1277 hm%ep%vdw_forces(:, :) = ks%vdw%forces(:, :)
1278 hm%ep%vdw_stress = ks%vdw%stress
1279 safe_deallocate_a(ks%vdw%forces)
1281 hm%ep%vdw_forces = 0.0_real64
1284 if (ks%calc%time_present .or. hm%time_zero)
then
1285 call hm%update(ks%gr, namespace, space, ext_partners, time = ks%calc%time)
1291 safe_deallocate_a(ks%calc%density)
1292 if (ks%calc%total_density_alloc)
then
1293 safe_deallocate_p(ks%calc%total_density)
1295 nullify(ks%calc%total_density)
1306 subroutine v_ks_hartree(namespace, ks, space, hm, ext_partners)
1308 type(
v_ks_t),
intent(inout) :: ks
1309 class(
space_t),
intent(in) :: space
1317 call dpoisson_solve(hm%psolver, namespace, hm%ks_pot%vhartree, ks%calc%total_density, reset=.false.)
1323 if (ks%calc%calc_energy)
then
1325 hm%energy%hartree =
m_half*
dmf_dotp(ks%gr, ks%calc%total_density, hm%ks_pot%vhartree)
1329 if(ks%calc%time_present)
then
1332 ks%calc%total_density, hm%energy%pcm_corr, kick=hm%kick, time=ks%calc%time)
1335 ks%calc%total_density, hm%energy%pcm_corr, time=ks%calc%time)
1340 ks%calc%total_density, hm%energy%pcm_corr, kick=hm%kick)
1343 ks%calc%total_density, hm%energy%pcm_corr)
1354 type(
v_ks_t),
intent(inout) :: ks
1358 ks%frozen_hxc = .
true.
1365 type(
v_ks_t),
intent(inout) :: this
1366 logical,
intent(in) :: calc_cur
1370 this%calculate_current = calc_cur
1377 type(
v_ks_t),
intent(inout) :: ks
1381 real(real64),
intent(out) :: int_dft_u
constant times a vector plus a vector
scales a vector by a constant
This is the common interface to a sorting routine. It performs the shell algorithm,...
pure logical function, public accel_is_enabled()
subroutine, public current_calculate(this, namespace, gr, hm, space, st)
Compute total electronic current density.
subroutine, public current_init(this, namespace)
This module implements a calculator for the density and defines related functions.
subroutine, public states_elec_total_density(st, mesh, total_rho)
This routine calculates the total electronic density.
subroutine, public density_calc(st, gr, density, istin)
Computes the density from the orbitals in st.
This module calculates the derivatives (gradients, Laplacians, etc.) of a function.
integer, parameter, public unpolarized
Parameters...
integer, parameter, public spinors
subroutine, public energy_calc_total(namespace, space, hm, gr, st, ext_partners, iunit, full)
This subroutine calculates the total energy of the system. Basically, it adds up the KS eigenvalues,...
real(real64) function, public zenergy_calc_electronic(namespace, hm, der, st, terms)
real(real64) function, public denergy_calc_electronic(namespace, hm, der, st, terms)
subroutine, public energy_calc_eigenvalues(namespace, hm, der, st)
subroutine, public energy_copy(ein, eout)
subroutine, public dexchange_operator_ace(this, namespace, mesh, st, xst, phase)
subroutine, public zexchange_operator_compute_potentials(this, namespace, space, gr, st, xst, kpoints, F_out)
subroutine, public exchange_operator_reinit(this, cam, st)
subroutine, public dexchange_operator_compute_potentials(this, namespace, space, gr, st, xst, kpoints, F_out)
subroutine, public zexchange_operator_ace(this, namespace, mesh, st, xst, phase)
real(real64) function, public dexchange_operator_compute_ex(mesh, st, xst)
Compute the exact exchange energy.
real(real64) function, public zexchange_operator_compute_ex(mesh, st, xst)
Compute the exact exchange energy.
real(real64), parameter, public m_two
real(real64), parameter, public m_zero
real(real64), parameter, public m_epsilon
real(real64), parameter, public m_half
real(real64), parameter, public m_one
This module implements the underlying real-space grid.
integer, parameter, public term_mgga
integer, parameter, public term_dft_u
logical function, public hamiltonian_elec_has_kick(hm)
logical function, public hamiltonian_elec_needs_current(hm, states_are_real)
subroutine, public hamiltonian_elec_update_pot(this, mesh, accumulate)
Update the KS potential of the electronic Hamiltonian.
This module defines classes and functions for interaction partners.
A module to handle KS potential, without the external potential.
integer, parameter, public rdmft
integer, parameter, public hartree
integer, parameter, public hartree_fock
integer, parameter, public independent_particles
integer, parameter, public generalized_kohn_sham_dft
integer, parameter, public kohn_sham_dft
integer, parameter, public dft_u_none
This modules implements the routines for doing constrain DFT for noncollinear magnetism.
integer, parameter, public constrain_none
subroutine, public magnetic_constrain_update(this, mesh, std, space, latt, pos, rho)
Recomputes the magnetic contraining potential.
subroutine, public magnetic_induced(namespace, gr, st, psolver, kpoints, a_ind, b_ind)
This subroutine receives as input a current, and produces as an output the vector potential that it i...
This module defines various routines, operating on mesh functions.
This module defines the meshes, which are used in Octopus.
subroutine, public messages_print_with_emphasis(msg, iunit, namespace)
subroutine, public messages_not_implemented(feature, namespace)
character(len=512), private msg
subroutine, public messages_warning(no_lines, all_nodes, namespace)
subroutine, public messages_obsolete_variable(namespace, name, rep)
subroutine, public messages_new_line()
character(len=256), dimension(max_lines), public message
to be output by fatal, warning
subroutine, public messages_fatal(no_lines, only_root_writes, namespace)
subroutine, public messages_input_error(namespace, var, details, row, column)
subroutine, public messages_experimental(name, namespace)
subroutine, public messages_info(no_lines, iunit, debug_only, stress, all_nodes, namespace)
This module handles the communicators for the various parallelization strategies.
logical function, public parse_is_defined(namespace, name)
subroutine, public pcm_hartree_potential(pcm, space, mesh, psolver, ext_partners, vhartree, density, pcm_corr, kick, time)
PCM reaction field due to the electronic density.
subroutine, public mf_calc(this, gr, st, ions, pt_mode, time)
subroutine, public dpoisson_solve_start(this, rho)
subroutine, public dpoisson_solve(this, namespace, pot, rho, all_nodes, kernel, reset)
Calculates the Poisson equation. Given the density returns the corresponding potential.
subroutine, public dpoisson_solve_finish(this, pot)
logical pure function, public poisson_is_async(this)
subroutine, public profiling_out(label)
Increment out counter and sum up difference between entry and exit time.
subroutine, public profiling_in(label, exclude)
Increment in counter and save entry time.
integer, parameter, public pseudo_exchange_unknown
integer, parameter, public pseudo_correlation_unknown
integer, parameter, public pseudo_correlation_any
integer, parameter, public pseudo_exchange_any
This module is intended to contain "only mathematical" functions and procedures.
integer, parameter, private libxc_c_index
pure logical function, public states_are_complex(st)
pure logical function, public states_are_real(st)
This module handles spin dimensions of the states and the k-point distribution.
subroutine, public states_elec_fermi(st, namespace, mesh, compute_spin)
calculate the Fermi level for the states in this object
subroutine, public states_elec_end(st)
finalize the states_elec_t object
subroutine, public states_elec_copy(stout, stin, exclude_wfns, exclude_eigenval, special)
make a (selective) copy of a states_elec_t object
subroutine, public states_elec_allocate_current(st, space, mesh)
This module provides routines for communicating states when using states parallelization.
subroutine, public states_elec_parallel_remote_access_stop(this)
stop remote memory access for states on other processors
subroutine, public states_elec_parallel_remote_access_start(this)
start remote memory access for states on other processors
subroutine v_ks_hartree(namespace, ks, space, hm, ext_partners)
Hartree contribution to the KS potential. This function is designed to be used by v_ks_calc_finish an...
subroutine, public v_ks_calc_finish(ks, hm, namespace, space, latt, st, ext_partners, force_semilocal)
subroutine, public v_ks_freeze_hxc(ks)
subroutine, public v_ks_end(ks)
subroutine, public v_ks_calculate_current(this, calc_cur)
subroutine, public v_ks_write_info(ks, iunit, namespace)
subroutine, public v_ks_update_dftu_energy(ks, namespace, hm, st, int_dft_u)
Update the value of <\psi | V_U | \psi>, where V_U is the DFT+U potential.
subroutine, public v_ks_calc_start(ks, namespace, space, hm, st, ions, latt, ext_partners, time, calc_energy, force_semilocal)
This routine starts the calculation of the Kohn-Sham potential. The routine v_ks_calc_finish must be ...
subroutine, public v_ks_calc(ks, namespace, space, hm, st, ions, ext_partners, calc_eigenval, time, calc_energy, calc_current, force_semilocal)
subroutine, public v_ks_h_setup(namespace, space, gr, ions, ext_partners, st, ks, hm, calc_eigenval, calc_current)
subroutine, public v_ks_init(ks, namespace, gr, st, ions, mc, space, kpoints)
subroutine, public x_slater_calc(namespace, gr, space, exxop, st, kpoints, ex, vxc)
Interface to X(slater_calc)
type(xc_cam_t), parameter, public cam_null
All CAM parameters set to zero.
type(xc_cam_t), parameter, public cam_exact_exchange
Use only Hartree Fock exact exchange.
subroutine, public x_fbe_calc(id, namespace, psolver, gr, st, space, ex, vxc)
Interface to X(x_fbe_calc) Two possible run modes possible: adiabatic and Sturm-Liouville....
subroutine, public fbe_c_lda_sl(namespace, psolver, gr, st, space, ec, vxc)
Sturm-Liouville version of the FBE local-density correlation functional.
integer, parameter, public xc_family_ks_inversion
declaring 'family' constants for 'functionals' not handled by libxc careful not to use a value define...
integer function, public xc_get_default_functional(dim, pseudo_x_functional, pseudo_c_functional)
Returns the default functional given the one parsed from the pseudopotentials and the space dimension...
integer, parameter, public xc_family_nc_mgga
integer, parameter, public xc_oep_x
Exact exchange.
integer, parameter, public xc_lda_c_fbe_sl
LDA correlation based ib the force-balance equation - Sturm-Liouville version.
integer, parameter, public xc_family_nc_lda
integer, parameter, public xc_oep_x_fbe_sl
Exchange approximation based on the force balance equation - Sturn-Liouville version.
integer, parameter, public xc_oep_x_fbe
Exchange approximation based on the force balance equation.
integer, parameter, public xc_oep_x_slater
Slater approximation to the exact exchange.
integer, parameter, public func_c
integer, parameter, public func_x
subroutine, public xc_ks_inversion_end(ks_inv)
subroutine, public xc_ks_inversion_write_info(ks_inversion, iunit, namespace)
subroutine, public xc_ks_inversion_init(ks_inv, namespace, gr, ions, st, xc, mc, space, kpoints)
subroutine, public xc_ks_inversion_calc(ks_inversion, namespace, space, gr, hm, ext_partners, st, vxc, time)
subroutine, public xc_write_info(xcs, iunit, namespace)
subroutine, public xc_init(xcs, namespace, ndim, periodic_dim, nel, x_id, c_id, xk_id, ck_id, hartree_fock, ispin)
pure logical function, public family_is_mgga(family, only_collinear)
Is the xc function part of the mGGA family.
logical pure function, public family_is_mgga_with_exc(xcs)
Is the xc function part of the mGGA family with an energy functional.
subroutine, public xc_end(xcs)
subroutine, public xc_get_vxc(gr, xcs, st, kpoints, psolver, namespace, space, rho, ispin, rcell_volume, vxc, ex, ec, deltaxc, vtau, ex_density, ec_density, stress_xc, force_orbitalfree)
logical pure function, public family_is_hybrid(xcs)
Returns true if the functional is an hybrid functional.
subroutine, public xc_get_nc_vxc(gr, xcs, st, kpoints, space, namespace, rho, vxc, ex, ec, vtau, ex_density, ec_density)
This routines is similar to xc_get_vxc but for noncollinear functionals, which are not implemented in...
integer, parameter, public oep_type_mgga
integer, parameter, public oep_level_none
the OEP levels
subroutine, public xc_oep_end(oep)
subroutine, public zxc_oep_calc(oep, namespace, xcs, gr, hm, st, space, rcell_volume, ex, ec, vxc)
This file handles the evaluation of the OEP potential, in the KLI or full OEP as described in S....
subroutine, public dxc_oep_calc(oep, namespace, xcs, gr, hm, st, space, rcell_volume, ex, ec, vxc)
This file handles the evaluation of the OEP potential, in the KLI or full OEP as described in S....
subroutine, public xc_oep_write_info(oep, iunit, namespace)
integer, parameter, public oep_type_exx
The different types of OEP that we can work with.
subroutine, public xc_oep_init(oep, namespace, gr, st, mc, space, oep_type)
subroutine, public zxc_oep_photon_calc(oep, namespace, xcs, gr, hm, st, space, ex, ec, vxc)
This file handles the evaluation of the OEP potential, in the KLI or full OEP as described in S....
subroutine, public dxc_oep_photon_calc(oep, namespace, xcs, gr, hm, st, space, ex, ec, vxc)
This file handles the evaluation of the OEP potential, in the KLI or full OEP as described in S....
This module implements the "photon-free" electron-photon exchange-correlation functional.
integer, parameter, public sic_none
no self-interaction correction
subroutine, public xc_sic_write_info(sic, iunit, namespace)
integer, parameter, public sic_adsic
Averaged density SIC.
subroutine, public xc_sic_init(sic, namespace, gr, st, mc, space)
initialize the SIC object
subroutine, public xc_sic_end(sic)
finalize the SIC and, if needed, the included OEP
integer, parameter, public sic_pz_oep
Perdew-Zunger SIC (OEP way)
integer, parameter, public sic_amaldi
Amaldi correction term.
subroutine, public xc_sic_calc_adsic(sic, namespace, space, gr, st, hm, xc, density, vxc, ex, ec)
Computes the ADSIC potential and energy.
A module that takes care of xc contribution from vdW interactions.
Extension of space that contains the knowledge of the spin dimension.
Description of the grid, containing information on derivatives, stencil, and symmetries.
The states_elec_t class contains all electronic wave functions.
subroutine get_functional_from_pseudos(x_functional, c_functional)
Tries to find out the functional from the pseudopotential.
subroutine v_a_xc(hm, force_semilocal)
subroutine calculate_density()