38 use,
intrinsic :: iso_fortran_env
101 logical :: calculating
102 logical :: time_present
104 real(real64),
allocatable :: density(:, :)
105 logical :: total_density_alloc
106 real(real64),
pointer,
contiguous :: total_density(:)
107 type(energy_t),
allocatable :: energy
108 type(states_elec_t),
pointer :: hf_st
109 real(real64),
allocatable :: vxc(:, :)
110 real(real64),
allocatable :: vtau(:, :)
111 real(real64),
allocatable :: axc(:, :, :)
112 real(real64),
allocatable :: a_ind(:, :)
113 real(real64),
allocatable :: b_ind(:, :)
114 logical :: calc_energy
119 integer,
public :: theory_level = -1
121 logical,
public :: frozen_hxc = .false.
123 integer,
public :: xc_family = 0
124 integer,
public :: xc_flags = 0
125 integer,
public :: xc_photon = 0
126 type(xc_t),
public :: xc
127 type(xc_photons_t),
public :: xc_photons
128 type(xc_oep_t),
public :: oep
129 type(xc_oep_photon_t),
public :: oep_photon
130 type(xc_ks_inversion_t),
public :: ks_inversion
131 type(xc_sic_t),
public :: sic
132 type(xc_vdw_t),
public :: vdw
133 type(grid_t),
pointer,
public :: gr
134 type(v_ks_calc_t) :: calc
135 logical :: calculate_current = .false.
136 type(current_t) :: current_calculator
137 logical :: include_td_field = .false.
138 logical,
public :: has_photons = .false.
139 logical :: xc_photon_include_hartree = .
true.
141 real(real64),
public :: stress_xc_gga(3, 3)
142 type(photon_mode_t),
pointer,
public :: pt => null()
143 type(mf_t),
public :: pt_mx
149 subroutine v_ks_init(ks, namespace, gr, st, ions, mc, space, kpoints)
150 type(v_ks_t),
intent(inout) :: ks
151 type(namespace_t),
intent(in) :: namespace
152 type(grid_t),
target,
intent(inout) :: gr
153 type(states_elec_t),
intent(in) :: st
154 type(ions_t),
intent(inout) :: ions
155 type(multicomm_t),
intent(in) :: mc
156 class(space_t),
intent(in) :: space
157 type(kpoints_t),
intent(in) :: kpoints
159 integer :: x_id, c_id, xk_id, ck_id, default, val
160 logical :: parsed_theory_level, using_hartree_fock
161 integer :: pseudo_x_functional, pseudo_c_functional
204 ks%xc_family = xc_family_none
210 parsed_theory_level = .false.
231 call messages_write(
'Info: the XCFunctional has been selected to match the pseudopotentials', new_line = .
true.)
246 call messages_write(
'The XCFunctional that you selected does not match the one used', new_line = .
true.)
295 call parse_variable(namespace,
'XCPhotonFunctional', option__xcphotonfunctional__none, ks%xc_photon)
305 call parse_variable(namespace,
'XCPhotonIncludeHartree', .
true., ks%xc_photon_include_hartree)
307 if (.not. ks%xc_photon_include_hartree)
then
318 using_hartree_fock = (ks%theory_level ==
hartree_fock) &
320 call xc_init(ks%xc, namespace, space%dim, space%periodic_dim, st%qtot, &
321 x_id, c_id, xk_id, ck_id,
hartree_fock = using_hartree_fock, ispin=st%d%ispin)
323 ks%xc_family = ks%xc%family
324 ks%xc_flags = ks%xc%flags
326 if (.not. parsed_theory_level)
then
335 call parse_variable(namespace,
'TheoryLevel', default, ks%theory_level)
345 if (
accel_is_enabled() .and. (gr%parallel_in_domains .or. st%parallel_in_states .or. st%d%kpt%parallel))
then
352 ks%xc_family = ior(ks%xc_family, xc_family_oep)
362 ks%sic%amaldi_factor =
m_one
364 select case (ks%theory_level)
369 if (space%periodic_dim == space%dim)
then
372 if (kpoints%full%npoints > 1)
then
377 if (kpoints%full%npoints > 1)
then
392 if (
bitand(ks%xc_family, xc_family_lda + xc_family_gga) /= 0)
then
393 call xc_sic_init(ks%sic, namespace, gr, st, mc, space)
396 if (
bitand(ks%xc_family, xc_family_oep) /= 0)
then
397 select case (ks%xc%functional(
func_x,1)%id)
399 if (kpoints%reduced%npoints > 1)
then
404 if (kpoints%reduced%npoints > 1)
then
409 if((.not. ks%has_photons) .or. (ks%xc_photon /= 0))
then
410 if(oep_type == -1)
then
413 call xc_oep_init(ks%oep, namespace, gr, st, mc, space, oep_type)
427 message(1) =
"SICCorrection can only be used with Kohn-Sham DFT"
431 if (st%d%ispin ==
spinors)
then
432 if (
bitand(ks%xc_family, xc_family_mgga + xc_family_hyb_mgga) /= 0)
then
437 ks%frozen_hxc = .false.
442 ks%calc%calculating = .false.
447 call ks%vdw%init(namespace, space, gr, ks%xc, ions, x_id, c_id)
449 if (ks%xc_photon /= 0)
then
451 call ks%xc_photons%init(namespace, ks%xc_photon , space, gr, st)
462 integer,
intent(out) :: x_functional
463 integer,
intent(out) :: c_functional
465 integer :: xf, cf, ispecies
466 logical :: warned_inconsistent
471 warned_inconsistent = .false.
472 do ispecies = 1, ions%nspecies
473 select type(spec=>ions%species(ispecies)%s)
475 xf = spec%x_functional()
476 cf = spec%c_functional()
483 call messages_write(
"Unknown XC functional for species '"//trim(ions%species(ispecies)%s%get_label())//
"'")
491 if (xf /= x_functional .and. .not. warned_inconsistent)
then
492 call messages_write(
'Inconsistent XC functional detected between species')
494 warned_inconsistent = .
true.
501 if (cf /= c_functional .and. .not. warned_inconsistent)
then
502 call messages_write(
'Inconsistent XC functional detected between species')
504 warned_inconsistent = .
true.
519 type(
v_ks_t),
intent(inout) :: ks
525 select case (ks%theory_level)
530 if (
bitand(ks%xc_family, xc_family_oep) /= 0)
then
540 if (ks%xc_photon /= 0)
then
541 call ks%xc_photons%end()
551 type(
v_ks_t),
intent(in) :: ks
552 integer,
optional,
intent(in) :: iunit
553 type(
namespace_t),
optional,
intent(in) :: namespace
560 select case (ks%theory_level)
585 subroutine v_ks_h_setup(namespace, space, gr, ions, ext_partners, st, ks, hm, calc_eigenval, calc_current)
588 type(
grid_t),
intent(in) :: gr
589 type(
ions_t),
intent(in) :: ions
592 type(
v_ks_t),
intent(inout) :: ks
594 logical,
optional,
intent(in) :: calc_eigenval
595 logical,
optional,
intent(in) :: calc_current
597 integer,
allocatable :: ind(:)
599 real(real64),
allocatable :: copy_occ(:)
600 logical :: calc_eigenval_
601 logical :: calc_current_
609 call v_ks_calc(ks, namespace, space, hm, st, ions, ext_partners, calc_eigenval = calc_eigenval_, calc_current = calc_current_)
611 if (st%restart_reorder_occs .and. .not. st%fromScratch)
then
612 message(1) =
"Reordering occupations for restart."
615 safe_allocate(ind(1:st%nst))
616 safe_allocate(copy_occ(1:st%nst))
619 call sort(st%eigenval(:, ik), ind)
620 copy_occ(1:st%nst) = st%occ(1:st%nst, ik)
622 st%occ(ist, ik) = copy_occ(ind(ist))
626 safe_deallocate_a(ind)
627 safe_deallocate_a(copy_occ)
637 subroutine v_ks_calc(ks, namespace, space, hm, st, ions, ext_partners, &
638 calc_eigenval, time, calc_energy, calc_current, force_semilocal)
639 type(
v_ks_t),
intent(inout) :: ks
644 type(
ions_t),
intent(in) :: ions
646 logical,
optional,
intent(in) :: calc_eigenval
647 real(real64),
optional,
intent(in) :: time
648 logical,
optional,
intent(in) :: calc_energy
649 logical,
optional,
intent(in) :: calc_current
650 logical,
optional,
intent(in) :: force_semilocal
652 logical :: calc_current_
658 call v_ks_calc_start(ks, namespace, space, hm, st, ions, hm%kpoints%latt, ext_partners, time, &
659 calc_energy, calc_current_, force_semilocal=force_semilocal)
661 ext_partners, force_semilocal=force_semilocal)
679 subroutine v_ks_calc_start(ks, namespace, space, hm, st, ions, latt, ext_partners, time, &
680 calc_energy, calc_current, force_semilocal)
681 type(
v_ks_t),
target,
intent(inout) :: ks
683 class(
space_t),
intent(in) :: space
686 type(
ions_t),
intent(in) :: ions
689 real(real64),
optional,
intent(in) :: time
690 logical,
optional,
intent(in) :: calc_energy
691 logical,
optional,
intent(in) :: calc_current
692 logical,
optional,
intent(in) :: force_semilocal
694 logical :: calc_current_
699 .and. ks%calculate_current &
705 assert(.not. ks%calc%calculating)
706 ks%calc%calculating = .
true.
708 write(
message(1),
'(a)')
'Debug: Calculating Kohn-Sham potential.'
711 ks%calc%time_present =
present(time)
717 if (ks%frozen_hxc)
then
718 if (calc_current_)
then
728 safe_allocate(ks%calc%energy)
732 ks%calc%energy%intnvxc =
m_zero
734 nullify(ks%calc%total_density)
744 if (ks%theory_level /=
hartree .and. ks%theory_level /=
rdmft)
call v_a_xc(hm, force_semilocal)
746 ks%calc%total_density_alloc = .false.
749 if (calc_current_)
then
754 nullify(ks%calc%hf_st)
758 safe_allocate(ks%calc%hf_st)
761 if (st%parallel_in_states)
then
763 call messages_write(
'State parallelization of Hartree-Fock exchange is not supported')
765 call messages_write(
'when running with OpenCL/CUDA. Please use domain parallelization')
767 call messages_write(
"or disable acceleration using 'DisableAccel = yes'.")
779 if (hm%self_induced_magnetic)
then
780 safe_allocate(ks%calc%a_ind(1:ks%gr%np_part, 1:space%dim))
781 safe_allocate(ks%calc%b_ind(1:ks%gr%np_part, 1:space%dim))
782 call magnetic_induced(namespace, ks%gr, st, hm%psolver, hm%kpoints, ks%calc%a_ind, ks%calc%b_ind)
785 if ((ks%has_photons) .and. (ks%calc%time_present) .and. (ks%xc_photon == 0) )
then
786 call mf_calc(ks%pt_mx, ks%gr, st, ions, ks%pt, time)
804 safe_allocate(ks%calc%density(1:ks%gr%np, 1:st%d%nspin))
809 call lalg_scal(ks%gr%np, st%d%nspin, ks%sic%amaldi_factor, ks%calc%density)
812 nullify(ks%calc%total_density)
813 if (
allocated(st%rho_core) .or. hm%d%spin_channels > 1)
then
814 ks%calc%total_density_alloc = .
true.
816 safe_allocate(ks%calc%total_density(1:ks%gr%np))
819 ks%calc%total_density(ip) = sum(ks%calc%density(ip, 1:hm%d%spin_channels))
823 if (
allocated(st%rho_core))
then
824 call lalg_axpy(ks%gr%np, -ks%sic%amaldi_factor, st%rho_core, ks%calc%total_density)
827 ks%calc%total_density_alloc = .false.
828 ks%calc%total_density => ks%calc%density(:, 1)
835 subroutine v_a_xc(hm, force_semilocal)
837 logical,
optional,
intent(in) :: force_semilocal
844 ks%calc%energy%exchange =
m_zero
845 ks%calc%energy%correlation =
m_zero
846 ks%calc%energy%xc_j =
m_zero
847 ks%calc%energy%vdw =
m_zero
849 safe_allocate(ks%calc%vxc(1:ks%gr%np, 1:st%d%nspin))
853 safe_allocate(ks%calc%vtau(1:ks%gr%np, 1:st%d%nspin))
858 if (ks%calc%calc_energy)
then
860 call xc_get_vxc(ks%gr, ks%xc, st, hm%kpoints, hm%psolver, namespace, space, ks%calc%density, st%d%ispin, &
861 latt%rcell_volume, ks%calc%vxc, ex = ks%calc%energy%exchange, ec = ks%calc%energy%correlation, &
862 deltaxc = ks%calc%energy%delta_xc, vtau = ks%calc%vtau, force_orbitalfree=force_semilocal)
864 call xc_get_vxc(ks%gr, ks%xc, st, hm%kpoints, hm%psolver, namespace, space, ks%calc%density, st%d%ispin, &
865 latt%rcell_volume, ks%calc%vxc, ex = ks%calc%energy%exchange, ec = ks%calc%energy%correlation, &
866 deltaxc = ks%calc%energy%delta_xc, stress_xc=ks%stress_xc_gga, force_orbitalfree=force_semilocal)
870 call xc_get_vxc(ks%gr, ks%xc, st, hm%kpoints, hm%psolver, namespace, space, ks%calc%density, &
871 st%d%ispin, latt%rcell_volume, ks%calc%vxc, vtau = ks%calc%vtau, force_orbitalfree=force_semilocal)
873 call xc_get_vxc(ks%gr, ks%xc, st, hm%kpoints, hm%psolver, namespace, space, ks%calc%density, &
874 st%d%ispin, latt%rcell_volume, ks%calc%vxc, stress_xc=ks%stress_xc_gga, force_orbitalfree=force_semilocal)
880 if (st%d%ispin /=
spinors)
then
881 message(1) =
"Noncollinear functionals can only be used with spinor wavefunctions."
886 message(1) =
"Cannot perform LCAO for noncollinear MGGAs."
887 message(2) =
"Please perform a LDA calculation first."
891 if (ks%calc%calc_energy)
then
893 call xc_get_nc_vxc(ks%gr, ks%xc, st, hm%kpoints, space, namespace, ks%calc%density, ks%calc%vxc, &
894 vtau = ks%calc%vtau, ex = ks%calc%energy%exchange, ec = ks%calc%energy%correlation)
896 call xc_get_nc_vxc(ks%gr, ks%xc, st, hm%kpoints, space, namespace, ks%calc%density, ks%calc%vxc, &
897 ex = ks%calc%energy%exchange, ec = ks%calc%energy%correlation)
901 call xc_get_nc_vxc(ks%gr, ks%xc, st, hm%kpoints, space, namespace, ks%calc%density, &
902 ks%calc%vxc, vtau = ks%calc%vtau)
904 call xc_get_nc_vxc(ks%gr, ks%xc, st, hm%kpoints, space, namespace, ks%calc%density, ks%calc%vxc)
920 if (ks%calc%calc_energy)
then
921 call xc_sic_calc_adsic(ks%sic, namespace, space, ks%gr, st, hm, ks%xc, ks%calc%density, &
922 ks%calc%vxc, ex = ks%calc%energy%exchange, ec = ks%calc%energy%correlation)
924 call xc_sic_calc_adsic(ks%sic, namespace, space, ks%gr, st, hm, ks%xc, ks%calc%density, &
936 call x_slater_calc(namespace, ks%gr, space, hm%exxop, st, hm%kpoints, ks%calc%energy%exchange, &
939 call x_fbe_calc(ks%xc%functional(
func_x,1)%id, namespace, hm%psolver, ks%gr, st, space, &
940 ks%calc%energy%exchange, vxc = ks%calc%vxc)
944 call fbe_c_lda_sl(namespace, hm%psolver, ks%gr, st, space, &
945 ks%calc%energy%correlation, vxc = ks%calc%vxc)
951 hm, st, space, ks%calc%energy%exchange, ks%calc%energy%correlation, vxc = ks%calc%vxc)
954 hm, st, space, ks%calc%energy%exchange, ks%calc%energy%correlation, vxc = ks%calc%vxc)
956 ks%calc%energy%photon_exchange = ks%oep_photon%pt%ex
964 call xc_ks_inversion_calc(ks%ks_inversion, namespace, space, ks%gr, hm, ext_partners, st, vxc = ks%calc%vxc, &
969 if (ks%xc_photon /= 0)
then
971 call ks%xc_photons%v_ks(namespace, ks%calc%total_density, ks%calc%density, ks%gr, space, hm%psolver, hm%ep, st)
974 do ispin = 1, hm%d%spin_channels
975 call lalg_axpy(ks%gr%np,
m_one, ks%xc_photons%vpx(1:ks%gr%np), ks%calc%vxc(1:ks%gr%np, ispin) )
979 ks%calc%energy%photon_exchange = ks%xc_photons%ex
984 call ks%vdw%calc(namespace, space, latt, ions%atom, ions%natoms, ions%pos, &
985 ks%gr, st, ks%calc%energy%vdw, ks%calc%vxc)
987 if (ks%calc%calc_energy)
then
1006 subroutine v_ks_calc_finish(ks, hm, namespace, space, latt, st, ext_partners, force_semilocal)
1007 type(
v_ks_t),
target,
intent(inout) :: ks
1010 class(
space_t),
intent(in) :: space
1014 logical,
optional,
intent(in) :: force_semilocal
1016 integer :: ip, ispin
1019 real(real64) :: exx_energy
1020 real(real64) :: factor
1024 assert(ks%calc%calculating)
1025 ks%calc%calculating = .false.
1027 if (ks%frozen_hxc)
then
1033 safe_deallocate_a(hm%energy)
1034 call move_alloc(ks%calc%energy, hm%energy)
1036 if (hm%self_induced_magnetic)
then
1037 hm%a_ind(1:ks%gr%np, 1:space%dim) = ks%calc%a_ind(1:ks%gr%np, 1:space%dim)
1038 hm%b_ind(1:ks%gr%np, 1:space%dim) = ks%calc%b_ind(1:ks%gr%np, 1:space%dim)
1040 safe_deallocate_a(ks%calc%a_ind)
1041 safe_deallocate_a(ks%calc%b_ind)
1044 if (
allocated(hm%v_static))
then
1045 hm%energy%intnvstatic =
dmf_dotp(ks%gr, ks%calc%total_density, hm%v_static)
1047 hm%energy%intnvstatic =
m_zero
1053 hm%energy%intnvxc =
m_zero
1054 hm%energy%hartree =
m_zero
1055 hm%energy%exchange =
m_zero
1056 hm%energy%exchange_hf =
m_zero
1057 hm%energy%correlation =
m_zero
1060 hm%energy%hartree =
m_zero
1061 call v_ks_hartree(namespace, ks, space, hm, ext_partners)
1067 call dxc_oep_calc(ks%sic%oep, namespace, ks%xc, ks%gr, hm, st, space, &
1068 latt%rcell_volume, hm%energy%exchange, hm%energy%correlation, vxc = ks%calc%vxc)
1070 call zxc_oep_calc(ks%sic%oep, namespace, ks%xc, ks%gr, hm, st, space, &
1071 latt%rcell_volume, hm%energy%exchange, hm%energy%correlation, vxc = ks%calc%vxc)
1080 call dxc_oep_calc(ks%oep, namespace, ks%xc, ks%gr, hm, st, space, &
1081 latt%rcell_volume, hm%energy%exchange, hm%energy%correlation, vxc = ks%calc%vxc)
1083 call zxc_oep_calc(ks%oep, namespace, ks%xc, ks%gr, hm, st, space, &
1084 latt%rcell_volume, hm%energy%exchange, hm%energy%correlation, vxc = ks%calc%vxc)
1090 if (ks%calc%calc_energy)
then
1092 hm%energy%intnvxc =
m_zero
1095 do ispin = 1, hm%d%nspin
1096 if (ispin <= 2)
then
1101 hm%energy%intnvxc = hm%energy%intnvxc + &
1102 factor*
dmf_dotp(ks%gr, st%rho(:, ispin), ks%calc%vxc(:, ispin), reduce = .false.)
1104 if (ks%gr%parallel_in_domains)
call ks%gr%allreduce(hm%energy%intnvxc)
1109 if (ks%theory_level /=
hartree .and. ks%theory_level /=
rdmft)
then
1111 safe_deallocate_a(hm%vxc)
1112 call move_alloc(ks%calc%vxc, hm%vxc)
1115 call lalg_copy(ks%gr%np, hm%d%nspin, ks%calc%vtau, hm%vtau)
1116 call hm%hm_base%accel_copy_pot(ks%gr, hm%vtau)
1117 safe_deallocate_a(ks%calc%vtau)
1123 hm%energy%intnvxc = hm%energy%intnvxc &
1126 hm%energy%intnvxc = hm%energy%intnvxc &
1136 if (.not. ks%xc_photon_include_hartree)
then
1137 hm%energy%hartree =
m_zero
1144 hm%vhxc(ip, 1) = hm%vxc(ip, 1) + hm%vhartree(ip)
1146 if (
allocated(hm%vberry))
then
1148 hm%vhxc(ip, 1) = hm%vhxc(ip, 1) + hm%vberry(ip, 1)
1154 hm%vhxc(ip, 2) = hm%vxc(ip, 2) + hm%vhartree(ip)
1156 if (
allocated(hm%vberry))
then
1158 hm%vhxc(ip, 2) = hm%vhxc(ip, 2) + hm%vberry(ip, 2)
1163 if (hm%d%ispin ==
spinors)
then
1166 hm%vhxc(ip, ispin) = hm%vxc(ip, ispin)
1172 hm%energy%exchange_hf =
m_zero
1177 if (
associated(hm%exxop%st))
then
1180 safe_deallocate_p(hm%exxop%st)
1182 if (
associated(ks%calc%hf_st) .and. hm%exxop%useACE)
then
1198 ks%calc%hf_st, xst, hm%kpoints, exx_energy)
1202 ks%calc%hf_st, xst, hm%kpoints, exx_energy)
1203 if (hm%phase%is_allocated())
then
1210 exx_energy = exx_energy + hm%exxop%singul%energy
1214 select case (ks%theory_level)
1218 hm%energy%exchange_hf = hm%energy%exchange_hf + exx_energy
1223 hm%energy%exchange_hf = hm%energy%exchange_hf + exx_energy
1242 if (ks%has_photons .and. (ks%xc_photon == 0))
then
1243 if (
associated(ks%pt_mx%vmf))
then
1244 forall(ip = 1:ks%gr%np) hm%vhxc(ip, 1) = hm%vhxc(ip, 1) + ks%pt_mx%vmf(ip)
1246 forall(ip = 1:ks%gr%np) hm%vhxc(ip, 2) = hm%vhxc(ip, 2) + ks%pt_mx%vmf(ip)
1249 hm%ep%photon_forces(1:space%dim) = ks%pt_mx%fmf(1:space%dim)
1252 if (ks%vdw%vdw_correction /= option__vdwcorrection__none)
then
1253 hm%ep%vdw_forces = ks%vdw%forces
1254 hm%ep%vdw_stress = ks%vdw%stress
1255 safe_deallocate_a(ks%vdw%forces)
1257 hm%ep%vdw_forces = 0.0_real64
1260 if (ks%calc%time_present .or. hm%time_zero)
then
1261 call hm%update(ks%gr, namespace, space, ext_partners, time = ks%calc%time)
1267 safe_deallocate_a(ks%calc%density)
1268 if (ks%calc%total_density_alloc)
then
1269 safe_deallocate_p(ks%calc%total_density)
1271 nullify(ks%calc%total_density)
1282 subroutine v_ks_hartree(namespace, ks, space, hm, ext_partners)
1284 type(
v_ks_t),
intent(inout) :: ks
1285 class(
space_t),
intent(in) :: space
1293 call dpoisson_solve(hm%psolver, namespace, hm%vhartree, ks%calc%total_density)
1299 if (ks%calc%calc_energy)
then
1301 hm%energy%hartree =
m_half*
dmf_dotp(ks%gr, ks%calc%total_density, hm%vhartree)
1305 if(ks%calc%time_present)
then
1308 ks%calc%total_density, hm%energy%pcm_corr, kick=hm%kick, time=ks%calc%time)
1311 ks%calc%total_density, hm%energy%pcm_corr, time=ks%calc%time)
1316 ks%calc%total_density, hm%energy%pcm_corr, kick=hm%kick)
1319 ks%calc%total_density, hm%energy%pcm_corr)
1330 type(
v_ks_t),
intent(inout) :: ks
1334 ks%frozen_hxc = .
true.
1341 type(
v_ks_t),
intent(inout) :: this
1342 logical,
intent(in) :: calc_cur
1346 this%calculate_current = calc_cur
constant times a vector plus a vector
Copies a vector x, to a vector y.
scales a vector by a constant
This is the common interface to a sorting routine. It performs the shell algorithm,...
pure logical function, public accel_is_enabled()
subroutine, public current_calculate(this, namespace, gr, hm, space, st)
Compute total electronic current density.
subroutine, public current_init(this, namespace)
This module implements a calculator for the density and defines related functions.
subroutine, public states_elec_total_density(st, mesh, total_rho)
This routine calculates the total electronic density.
subroutine, public density_calc(st, gr, density, istin)
Computes the density from the orbitals in st.
This module calculates the derivatives (gradients, Laplacians, etc.) of a function.
integer, parameter, public unpolarized
Parameters...
integer, parameter, public spinors
subroutine, public energy_calc_total(namespace, space, hm, gr, st, ext_partners, iunit, full)
This subroutine calculates the total energy of the system. Basically, it adds up the KS eigenvalues,...
real(real64) function, public zenergy_calc_electronic(namespace, hm, der, st, terms)
real(real64) function, public denergy_calc_electronic(namespace, hm, der, st, terms)
subroutine, public energy_calc_eigenvalues(namespace, hm, der, st)
subroutine, public energy_copy(ein, eout)
subroutine, public dexchange_operator_ace(this, namespace, mesh, st, xst, phase)
subroutine, public zexchange_operator_compute_potentials(this, namespace, space, gr, st, xst, kpoints, ex, F_out)
subroutine, public dexchange_operator_compute_potentials(this, namespace, space, gr, st, xst, kpoints, ex, F_out)
subroutine, public zexchange_operator_ace(this, namespace, mesh, st, xst, phase)
subroutine, public exchange_operator_reinit(this, omega, alpha, beta, st)
real(real64), parameter, public m_two
real(real64), parameter, public m_zero
real(real64), parameter, public m_epsilon
real(real64), parameter, public m_half
real(real64), parameter, public m_one
This module implements the underlying real-space grid.
integer, parameter, public term_mgga
integer, parameter, public term_dft_u
integer, parameter, public generalized_kohn_sham_dft
integer, parameter, public rdmft
integer, parameter, public hartree
logical function, public hamiltonian_elec_has_kick(hm)
integer, parameter, public hartree_fock
integer, parameter, public independent_particles
logical function, public hamiltonian_elec_needs_current(hm, states_are_real)
subroutine, public hamiltonian_elec_update_pot(this, mesh, accumulate)
Update the KS potential of the electronic Hamiltonian.
integer, parameter, public kohn_sham_dft
This module defines classes and functions for interaction partners.
integer, parameter, public dft_u_none
subroutine, public magnetic_constrain_update(this, mesh, std, space, latt, pos)
subroutine, public magnetic_induced(namespace, gr, st, psolver, kpoints, a_ind, b_ind)
This subroutine receives as input a current, and produces as an output the vector potential that it i...
This module defines various routines, operating on mesh functions.
This module defines the meshes, which are used in Octopus.
subroutine, public messages_print_with_emphasis(msg, iunit, namespace)
subroutine, public messages_not_implemented(feature, namespace)
character(len=512), private msg
subroutine, public messages_warning(no_lines, all_nodes, namespace)
subroutine, public messages_obsolete_variable(namespace, name, rep)
subroutine, public messages_new_line()
character(len=256), dimension(max_lines), public message
to be output by fatal, warning
subroutine, public messages_fatal(no_lines, only_root_writes, namespace)
subroutine, public messages_input_error(namespace, var, details, row, column)
subroutine, public messages_experimental(name, namespace)
subroutine, public messages_info(no_lines, iunit, debug_only, stress, all_nodes, namespace)
This module handles the communicators for the various parallelization strategies.
logical function, public parse_is_defined(namespace, name)
subroutine, public pcm_hartree_potential(pcm, space, mesh, psolver, ext_partners, vhartree, density, pcm_corr, kick, time)
PCM reaction field due to the electronic density.
subroutine, public mf_calc(this, gr, st, ions, pt_mode, time)
subroutine, public dpoisson_solve_start(this, rho)
subroutine, public dpoisson_solve_finish(this, pot)
subroutine, public dpoisson_solve(this, namespace, pot, rho, all_nodes, kernel)
Calculates the Poisson equation. Given the density returns the corresponding potential.
logical pure function, public poisson_is_async(this)
subroutine, public profiling_out(label)
Increment out counter and sum up difference between entry and exit time.
subroutine, public profiling_in(label, exclude)
Increment in counter and save entry time.
integer, parameter, public pseudo_exchange_unknown
integer, parameter, public pseudo_correlation_unknown
integer, parameter, public pseudo_correlation_any
integer, parameter, public pseudo_exchange_any
This module is intended to contain "only mathematical" functions and procedures.
integer, parameter, private libxc_c_index
pure logical function, public states_are_complex(st)
pure logical function, public states_are_real(st)
This module handles spin dimensions of the states and the k-point distribution.
subroutine, public states_elec_fermi(st, namespace, mesh, compute_spin)
calculate the Fermi level for the states in this object
subroutine, public states_elec_end(st)
finalize the states_elec_t object
subroutine, public states_elec_copy(stout, stin, exclude_wfns, exclude_eigenval, special)
make a (selective) copy of a states_elec_t object
subroutine, public states_elec_allocate_current(st, space, mesh)
This module provides routines for communicating states when using states parallelization.
subroutine, public states_elec_parallel_remote_access_stop(this)
stop remote memory access for states on other processors
subroutine, public states_elec_parallel_remote_access_start(this)
start remote memory access for states on other processors
subroutine v_ks_hartree(namespace, ks, space, hm, ext_partners)
Hartree contribution to the KS potential. This function is designed to be used by v_ks_calc_finish an...
subroutine, public v_ks_calc_finish(ks, hm, namespace, space, latt, st, ext_partners, force_semilocal)
subroutine, public v_ks_freeze_hxc(ks)
subroutine, public v_ks_end(ks)
subroutine, public v_ks_calculate_current(this, calc_cur)
subroutine, public v_ks_write_info(ks, iunit, namespace)
subroutine, public v_ks_calc_start(ks, namespace, space, hm, st, ions, latt, ext_partners, time, calc_energy, calc_current, force_semilocal)
This routine starts the calculation of the Kohn-Sham potential. The routine v_ks_calc_finish must be ...
subroutine, public v_ks_calc(ks, namespace, space, hm, st, ions, ext_partners, calc_eigenval, time, calc_energy, calc_current, force_semilocal)
subroutine, public v_ks_h_setup(namespace, space, gr, ions, ext_partners, st, ks, hm, calc_eigenval, calc_current)
subroutine, public v_ks_init(ks, namespace, gr, st, ions, mc, space, kpoints)
subroutine, public x_slater_calc(namespace, gr, space, exxop, st, kpoints, ex, vxc)
Interface to X(slater_calc)
subroutine, public x_fbe_calc(id, namespace, psolver, gr, st, space, ex, vxc)
Interface to X(x_fbe_calc) Two possible run modes possible: adiabatic and Sturm-Liouville....
subroutine, public fbe_c_lda_sl(namespace, psolver, gr, st, space, ec, vxc)
Sturm-Liouville version of the FBE local-density correlation functional.
integer, parameter, public xc_family_ks_inversion
declaring 'family' constants for 'functionals' not handled by libxc careful not to use a value define...
integer function, public xc_get_default_functional(dim, pseudo_x_functional, pseudo_c_functional)
Returns the default functional given the one parsed from the pseudopotentials and the space dimension...
integer, parameter, public xc_family_nc_mgga
integer, parameter, public xc_oep_x
Exact exchange.
integer, parameter, public xc_lda_c_fbe_sl
LDA correlation based ib the force-balance equation - Sturm-Liouville version.
integer, parameter, public xc_family_nc_lda
integer, parameter, public xc_oep_x_fbe_sl
Exchange approximation based on the force balance equation - Sturn-Liouville version.
integer, parameter, public xc_oep_x_fbe
Exchange approximation based on the force balance equation.
integer, parameter, public xc_oep_x_slater
Slater approximation to the exact exchange.
integer, parameter, public func_c
integer, parameter, public func_x
subroutine, public xc_ks_inversion_end(ks_inv)
subroutine, public xc_ks_inversion_write_info(ks_inversion, iunit, namespace)
subroutine, public xc_ks_inversion_init(ks_inv, namespace, gr, ions, st, xc, mc, space, kpoints)
subroutine, public xc_ks_inversion_calc(ks_inversion, namespace, space, gr, hm, ext_partners, st, vxc, time)
subroutine, public xc_write_info(xcs, iunit, namespace)
subroutine, public xc_init(xcs, namespace, ndim, periodic_dim, nel, x_id, c_id, xk_id, ck_id, hartree_fock, ispin)
pure logical function, public family_is_mgga(family, only_collinear)
Is the xc function part of the mGGA family.
logical pure function, public family_is_mgga_with_exc(xcs)
Is the xc function part of the mGGA family with an energy functional.
subroutine, public xc_end(xcs)
subroutine, public xc_get_vxc(gr, xcs, st, kpoints, psolver, namespace, space, rho, ispin, rcell_volume, vxc, ex, ec, deltaxc, vtau, ex_density, ec_density, stress_xc, force_orbitalfree)
logical pure function, public family_is_hybrid(xcs)
Returns true if the functional is an hybrid functional.
subroutine, public xc_get_nc_vxc(gr, xcs, st, kpoints, space, namespace, rho, vxc, ex, ec, vtau, ex_density, ec_density)
This routines is similar to xc_get_vxc but for noncollinear functionals, which are not implemented in...
integer, parameter, public oep_type_mgga
integer, parameter, public oep_level_none
the OEP levels
subroutine, public xc_oep_end(oep)
subroutine, public zxc_oep_calc(oep, namespace, xcs, gr, hm, st, space, rcell_volume, ex, ec, vxc)
This file handles the evaluation of the OEP potential, in the KLI or full OEP as described in S....
subroutine, public dxc_oep_calc(oep, namespace, xcs, gr, hm, st, space, rcell_volume, ex, ec, vxc)
This file handles the evaluation of the OEP potential, in the KLI or full OEP as described in S....
subroutine, public xc_oep_write_info(oep, iunit, namespace)
integer, parameter, public oep_type_exx
The different types of OEP that we can work with.
subroutine, public xc_oep_init(oep, namespace, gr, st, mc, space, oep_type)
subroutine, public zxc_oep_photon_calc(oep, namespace, xcs, gr, hm, st, space, ex, ec, vxc)
This file handles the evaluation of the OEP potential, in the KLI or full OEP as described in S....
subroutine, public dxc_oep_photon_calc(oep, namespace, xcs, gr, hm, st, space, ex, ec, vxc)
This file handles the evaluation of the OEP potential, in the KLI or full OEP as described in S....
This module implements the "photon-free" electron-photon exchange-correlation functional.
integer, parameter, public sic_none
no self-interaction correction
subroutine, public xc_sic_write_info(sic, iunit, namespace)
integer, parameter, public sic_adsic
Averaged density SIC.
subroutine, public xc_sic_init(sic, namespace, gr, st, mc, space)
initialize the SIC object
subroutine, public xc_sic_end(sic)
finalize the SIC and, if needed, the included OEP
integer, parameter, public sic_pz_oep
Perdew-Zunger SIC (OEP way)
integer, parameter, public sic_amaldi
Amaldi correction term.
subroutine, public xc_sic_calc_adsic(sic, namespace, space, gr, st, hm, xc, density, vxc, ex, ec)
Computes the ADSIC potential and energy.
A module that takes care of xc contribution from vdW interactions.
Extension of space that contains the knowledge of the spin dimension.
Description of the grid, containing information on derivatives, stencil, and symmetries.
The states_elec_t class contains all electronic wave functions.
subroutine get_functional_from_pseudos(x_functional, c_functional)
subroutine v_a_xc(hm, force_semilocal)
subroutine calculate_density()