63 class(mesh_t),
intent(in) :: mesh
64 type(states_elec_dim_t),
intent(in) :: std
65 real(real64),
intent(in) :: rho(:,:)
66 real(real64),
intent(out) :: md(:,:)
70 select case (std%ispin)
76 md(1:mesh%np, 3) = rho(1:mesh%np, 1) - rho(1:mesh%np, 2)
79 md(1:mesh%np, 1) =
m_two*rho(1:mesh%np, 3)
80 md(1:mesh%np, 2) = -
m_two*rho(1:mesh%np, 4)
81 md(1:mesh%np, 3) = rho(1:mesh%np, 1) - rho(1:mesh%np, 2)
90 class(mesh_t),
intent(in) :: mesh
91 type(states_elec_t),
intent(in) :: st
92 real(real64),
intent(in) :: rho(:,:)
93 real(real64),
intent(out) :: mm(3)
95 real(real64),
allocatable :: md(:,:)
97 push_sub(states_elec_magnetic_moment)
99 safe_allocate(md(1:mesh%np, 1:3))
106 if (mesh%parallel_in_domains)
then
107 call mesh%allreduce(mm)
110 safe_deallocate_a(md)
112 pop_sub(states_elec_magnetic_moment)
118 class(mesh_t),
intent(in) :: mesh
119 type(states_elec_t),
intent(in) :: st
120 type(ions_t),
intent(in) :: ions
121 type(boundaries_t),
intent(in) :: boundaries
122 real(real64),
intent(in) :: lmm_r
123 integer,
optional,
intent(in) :: iunit
124 type(namespace_t),
optional,
intent(in) :: namespace
127 real(real64) :: mm(max(mesh%box%dim, 3))
128 real(real64),
allocatable :: lmm(:,:)
133 safe_allocate(lmm(1:max(mesh%box%dim, 3), 1:ions%natoms))
136 message(1) =
'Total Magnetic Moment:'
139 write(
message(1),
'(a,f10.6)')
' mz = ', mm(3)
141 else if (st%d%ispin ==
spinors)
then
142 write(
message(1),
'(1x,3(a,f10.6,3x))')
'mx = ', mm(1),
'my = ', mm(2),
'mz = ', mm(3)
146 write(
message(1),
'(a,a,a,f7.3,a)')
'Local Magnetic Moments (sphere radius [', &
150 write(
message(1),
'(a,6x,14x,a)')
' Ion',
'mz'
152 do ia = 1, ions%natoms
153 write(
message(1),
'(i4,a10,f15.6)') ia, trim(ions%atom(ia)%species%get_label()), lmm(3, ia)
156 else if (st%d%ispin ==
spinors)
then
157 write(
message(1),
'(a,8x,13x,a,13x,a,13x,a)')
' Ion',
'mx',
'my',
'mz'
159 do ia = 1, ions%natoms
160 write(
message(1),
'(i4,a10,9f15.6)') ia, trim(ions%atom(ia)%species%get_label()), lmm(:, ia)
165 safe_deallocate_a(lmm)
172 class(
mesh_t),
intent(in) :: mesh
174 type(
ions_t),
intent(in) :: ions
176 real(real64),
intent(in) :: rho(:,:)
177 real(real64),
intent(in) :: rr
178 real(real64),
intent(out) :: lmm(max(mesh%box%dim, 3), ions%natoms)
180 integer :: ia, idir, is
181 real(real64),
allocatable :: md(:, :)
183 real(real64) :: cosqr, sinqr
184 complex(real64),
allocatable :: phase_spiral(:)
188 safe_allocate(md(1:mesh%np, 1:max(mesh%box%dim, 3)))
192 do ia = 1, ions%natoms
193 call submesh_init(sphere, ions%space, mesh, ions%latt, ions%pos(:, ia), rr)
195 if (boundaries%spiral)
then
196 safe_allocate(phase_spiral(1:sphere%np))
198 phase_spiral(is) =
exp(+
m_zi*sum((sphere%rel_x(:,is) + sphere%center - mesh%x(sphere%map(is),:)) &
199 *boundaries%spiral_q(1:mesh%box%dim)))
202 if (mesh%box%dim>= 3)
then
208 cosqr = real(phase_spiral(is), real64)
209 sinqr = aimag(phase_spiral(is))
210 lmm(1,ia) = lmm(1,ia)+md(sphere%map(is),1)*cosqr - md(sphere%map(is),2)*sinqr
211 lmm(2,ia) = lmm(2,ia)+md(sphere%map(is),1)*sinqr + md(sphere%map(is),2)*cosqr
213 lmm(1,ia) = lmm(1,ia)*mesh%volume_element
214 lmm(2,ia) = lmm(2,ia)*mesh%volume_element
217 assert(.not. boundaries%spiral)
220 safe_deallocate_a(phase_spiral)
222 do idir = 1, max(mesh%box%dim, 3)
230 if (mesh%parallel_in_domains)
then
231 call mesh%allreduce(lmm)
234 safe_deallocate_a(md)
241 class(
mesh_t),
intent(in) :: mesh
243 real(real64),
intent(in) :: qq(:)
244 complex(real64),
intent(out) :: trans_mag(6)
247 complex(real64),
allocatable :: tmp(:,:)
248 real(real64),
allocatable :: md(:, :)
249 complex(real64) :: expqr
255 safe_allocate(tmp(1:mesh%np, 1:6))
256 safe_allocate(md(1:mesh%np, 1:max(mesh%box%dim, 3)))
260 expqr =
exp(-
m_zi*sum(mesh%x(ip, 1:mesh%box%dim)*qq(1:mesh%box%dim)))
261 tmp(ip,1) = expqr*md(ip,1)
262 tmp(ip,2) = expqr*md(ip,2)
263 tmp(ip,3) = expqr*md(ip,3)
264 tmp(ip,4) = conjg(expqr)*md(ip,1)
265 tmp(ip,5) = conjg(expqr)*md(ip,2)
266 tmp(ip,6) = conjg(expqr)*md(ip,3)
275 safe_deallocate_a(md)
276 safe_deallocate_a(tmp)
287 subroutine magnetic_induced(namespace, gr, st, psolver, kpoints, a_ind, b_ind)
289 type(
grid_t),
intent(in) :: gr
293 real(real64),
contiguous,
intent(out) :: a_ind(:, :)
294 real(real64),
contiguous,
intent(out) :: b_ind(:, :)
299 real(real64),
allocatable :: jj(:, :, :)
312 safe_allocate(jj(1:gr%np_part, 1:gr%der%dim, 1:st%d%nspin))
316 if (st%d%nspin > 1)
then
317 do idir = 1, gr%der%dim
318 jj(:, idir, 1) = jj(:, idir, 1) + jj(:, idir, 2)
323 do idir = 1, gr%der%dim
324 call dpoisson_solve(psolver, namespace, a_ind(:, idir), jj(:, idir, 1))
329 a_ind(1:gr%np, 1:gr%der%dim) = - a_ind(1:gr%np, 1:gr%der%dim) /
p_c
333 safe_deallocate_a(jj)
338 integer,
intent(in) :: iunit
339 class(
mesh_t),
intent(in) :: mesh
340 real(real64),
intent(in) :: vxc(:,:)
343 real(real64),
allocatable :: torque(:,:)
344 real(real64) :: tt(3)
348 safe_allocate(torque(1:mesh%np, 1:3))
357 write(iunit,
'(a)')
'Total xc torque:'
358 write(iunit,
'(1x,3(a,es10.3,3x))')
'Tx = ', tt(1),
'Ty = ', tt(2),
'Tz = ', tt(3)
361 safe_deallocate_a(torque)
368 class(
mesh_t),
intent(in) :: mesh
369 real(real64),
intent(in) :: vxc(:,:)
371 real(real64),
intent(inout) :: torque(:,:)
373 real(real64) :: mag(3), bxc(3)
381 mag(1) =
m_two * st%rho(ip, 3)
382 mag(2) = -
m_two * st%rho(ip, 4)
383 mag(3) = st%rho(ip, 1) - st%rho(ip, 2)
384 bxc(1) = -
m_two * vxc(ip, 3)
385 bxc(2) =
m_two * vxc(ip, 4)
386 bxc(3) = -(vxc(ip, 1) - vxc(ip, 2))
387 torque(ip, 1) = mag(2) * bxc(3) - mag(3) * bxc(2)
388 torque(ip, 2) = mag(3) * bxc(1) - mag(1) * bxc(3)
389 torque(ip, 3) = mag(1) * bxc(2) - mag(2) * bxc(1)
double exp(double __x) __attribute__((__nothrow__
Module implementing boundary conditions in Octopus.
This module calculates the derivatives (gradients, Laplacians, etc.) of a function.
subroutine, public dderivatives_curl(der, ff, op_ff, ghost_update, set_bc)
apply the curl operator to a vector of mesh functions
integer, parameter, public unpolarized
Parameters...
integer, parameter, public spinors
integer, parameter, public spin_polarized
real(real64), parameter, public m_two
real(real64), parameter, public m_zero
complex(real64), parameter, public m_zi
real(real64), parameter, public p_c
Electron gyromagnetic ratio, see Phys. Rev. Lett. 130, 071801 (2023)
This module implements the underlying real-space grid.
subroutine, public magnetic_local_moments(mesh, st, ions, boundaries, rho, rr, lmm)
subroutine, public write_magnetic_moments(mesh, st, ions, boundaries, lmm_r, iunit, namespace)
subroutine, public calc_xc_torque(mesh, vxc, st, torque)
subroutine, public magnetic_moment(mesh, st, rho, mm)
subroutine, public magnetic_total_magnetization(mesh, st, qq, trans_mag)
subroutine, public write_total_xc_torque(iunit, mesh, vxc, st)
subroutine, public magnetic_density(mesh, std, rho, md)
subroutine, public magnetic_induced(namespace, gr, st, psolver, kpoints, a_ind, b_ind)
This subroutine receives as input a current, and produces as an output the vector potential that it i...
This module defines various routines, operating on mesh functions.
complex(real64) function, public zmf_integrate(mesh, ff, mask, reduce)
Integrate a function on the mesh.
real(real64) function, public dmf_integrate(mesh, ff, mask, reduce)
Integrate a function on the mesh.
This module defines the meshes, which are used in Octopus.
character(len=256), dimension(max_lines), public message
to be output by fatal, warning
subroutine, public messages_info(no_lines, iunit, debug_only, stress, all_nodes, namespace)
logical function mpi_grp_is_root(grp)
Is the current MPI process of grpcomm, root.
type(mpi_grp_t), public mpi_world
subroutine, public dpoisson_solve(this, namespace, pot, rho, all_nodes, kernel)
Calculates the Poisson equation. Given the density returns the corresponding potential.
subroutine, public profiling_out(label)
Increment out counter and sum up difference between entry and exit time.
subroutine, public profiling_in(label, exclude)
Increment in counter and save entry time.
pure logical function, public states_are_real(st)
This module handles spin dimensions of the states and the k-point distribution.
subroutine, public states_elec_calc_quantities(gr, st, kpoints, nlcc, kinetic_energy_density, paramagnetic_current, density_gradient, density_laplacian, gi_kinetic_energy_density, st_end)
calculated selected quantities
real(real64) function, public dsm_integrate_frommesh(mesh, sm, ff, reduce)
subroutine, public submesh_end(this)
subroutine, public submesh_init(this, space, mesh, latt, center, rc)
brief This module defines the class unit_t which is used by the unit_systems_oct_m module.
character(len=20) pure function, public units_abbrev(this)
This module defines the unit system, used for input and output.
type(unit_system_t), public units_out
This class contains information about the boundary conditions.
Description of the grid, containing information on derivatives, stencil, and symmetries.
Describes mesh distribution to nodes.
The states_elec_t class contains all electronic wave functions.
A submesh is a type of mesh, used for the projectors in the pseudopotentials It contains points on a ...