30 use,
intrinsic :: iso_fortran_env
60 integer :: max_iter_berry
66 type(berry_t),
intent(inout) :: this
67 type(namespace_t),
intent(in) :: namespace
81 call parse_variable(namespace,
'MaximumIterBerry', 10, this%max_iter_berry)
82 if (this%max_iter_berry < 0) this%max_iter_berry = huge(this%max_iter_berry)
90 iter, ks, ions, ext_partners)
91 type(berry_t),
intent(in) :: this
92 type(namespace_t),
intent(in) :: namespace
93 type(electron_space_t),
intent(in) :: space
94 type(eigensolver_t),
intent(inout) :: eigensolver
95 type(grid_t),
intent(in) :: gr
96 type(states_elec_t),
intent(inout) :: st
97 type(hamiltonian_elec_t),
intent(inout) :: hm
98 integer,
intent(in) :: iter
99 type(v_ks_t),
intent(inout) :: ks
100 type(ions_t),
intent(in) :: ions
101 type(partner_list_t),
intent(in) :: ext_partners
103 integer :: iberry, idir
104 logical :: berry_conv
105 real(real64) :: dipole_prev(space%dim), dipole(space%dim)
106 real(real64),
parameter :: tol = 1e-5_real64
110 assert(
allocated(hm%vberry))
112 if (st%parallel_in_states)
then
118 do iberry = 1, this%max_iter_berry
119 eigensolver%converged = 0
120 call eigensolver%run(namespace, gr, st, hm, iter)
123 call berry_potential(st, namespace, space, gr, hm%ions%latt, hm%ep%e_field, hm%vberry)
127 hm%ep%e_field(1:space%periodic_dim), hm%vberry(1:gr%np, 1:hm%d%nspin))
130 call v_ks_calc(ks, namespace, space, hm, st, ions, ext_partners, calc_current=.false.)
134 write(
message(1),
'(a,9f12.6)')
'Dipole = ', dipole(1:space%dim)
138 do idir = 1, space%periodic_dim
139 if (abs(dipole_prev(idir)) > 1e-10_real64)
then
140 berry_conv = berry_conv .and. (abs(dipole(idir) - dipole_prev(idir)) < tol &
141 .or.(abs((dipole(idir) - dipole_prev(idir)) / dipole_prev(idir)) < tol))
143 berry_conv = berry_conv .and. (abs(dipole(idir) - dipole_prev(idir)) < tol)
156 subroutine calc_dipole(dipole, space, mesh, st, ions)
157 real(real64),
intent(out) :: dipole(:)
159 class(
mesh_t),
intent(in) :: mesh
161 type(
ions_t),
intent(in) :: ions
163 integer :: ispin, idir
164 real(real64) :: e_dip(space%dim + 1, st%d%nspin), n_dip(space%dim), nquantumpol
168 assert(.not. ions%latt%nonorthogonal)
170 dipole(1:space%dim) =
m_zero
172 do ispin = 1, st%d%nspin
176 n_dip = ions%dipole()
178 do idir = 1, space%dim
180 if (idir <= space%periodic_dim)
then
181 dipole(idir) = -n_dip(idir) -
berry_dipole(st, mesh, ions%latt, space, idir)
184 nquantumpol = nint(dipole(idir)/norm2(ions%latt%rlattice(:, idir)))
185 dipole(idir) = dipole(idir) - nquantumpol * norm2(ions%latt%rlattice(:, idir))
189 e_dip(idir + 1, 1) = sum(e_dip(idir + 1, :))
190 dipole(idir) = -n_dip(idir) - e_dip(idir + 1, 1)
209 real(real64) function
berry_dipole(st, mesh, latt, space, dir) result(dipole)
211 class(
mesh_t),
intent(in) :: mesh
213 class(
space_t),
intent(in) :: space
214 integer,
intent(in) :: dir
217 complex(real64) :: det
226 do ik = st%d%kpt%start, st%d%kpt%end
228 dipole = dipole + aimag(
log(det))
231 dipole = -(norm2(latt%rlattice(:,dir)) / (
m_two*
m_pi)) * dipole
242 complex(real64) function berry_phase_det(st, mesh, latt, space, dir, ik)
result(det)
243 type(states_elec_t),
intent(in) :: st
244 class(mesh_t),
intent(in) :: mesh
245 type(lattice_vectors_t),
intent(in) :: latt
246 class(space_t),
intent(in) :: space
247 integer,
intent(in) :: dir
248 integer,
intent(in) :: ik
250 integer :: ist, noccst, gvector(3)
251 complex(real64),
allocatable :: matrix(:, :), tmp(:), phase(:)
252 complex(real64),
allocatable :: psi(:, :), psi2(:, :)
259 if (st%occ(ist, ik) > m_epsilon) noccst = ist
262 safe_allocate(matrix(1:noccst, 1:noccst))
269 det = lalg_determinant(noccst, matrix, preserve_mat=.false.) ** st%smear%el_per_state
274 safe_deallocate_a(matrix)
275 safe_deallocate_a(tmp)
276 safe_deallocate_a(phase)
277 safe_deallocate_a(psi)
278 safe_deallocate_a(psi2)
286 type(states_elec_t),
intent(in) :: st
287 class(mesh_t),
intent(in) :: mesh
288 type(lattice_vectors_t),
intent(in) :: latt
289 class(space_t),
intent(in) :: space
290 integer,
intent(in) :: nst
291 integer,
intent(in) :: ik
292 integer,
intent(in) :: ik2
293 integer,
intent(in) :: gvector(:)
294 complex(real64),
intent(out) :: matrix(:,:)
296 integer :: ist, ist2, idim, ip, idir
297 complex(real64),
allocatable :: tmp(:), phase(:)
298 complex(real64),
allocatable :: psi(:, :), psi2(:, :)
304 assert(.not. st%parallel_in_states)
305 assert(.not. latt%nonorthogonal)
307 safe_allocate(tmp(1:mesh%np))
308 safe_allocate(phase(1:mesh%np))
309 safe_allocate(psi(1:mesh%np, 1:st%d%dim))
310 safe_allocate(psi2(1:mesh%np, 1:st%d%dim))
313 do idir = 1, space%dim
314 if (gvector(idir) == 0) cycle
315 norm = norm2(latt%rlattice(:,idir))
316 if (idir > space%periodic_dim) norm = norm * m_two * mesh%box%bounding_box_l(idir)
318 phase(ip) = phase(ip) +
exp(-m_zi*gvector(idir)*(m_two*m_pi/norm)*mesh%x(ip, idir))
323 call states_elec_get_state(st, mesh, ist, ik, psi)
325 call states_elec_get_state(st, mesh, ist2, ik2, psi2)
326 matrix(ist, ist2) = m_z0
327 do idim = 1, st%d%dim
330 tmp(ip) = conjg(psi(ip, idim))*phase(ip)*psi2(ip, idim)
333 matrix(ist, ist2) = matrix(ist, ist2) + zmf_integrate(mesh, tmp)
338 safe_deallocate_a(tmp)
339 safe_deallocate_a(phase)
340 safe_deallocate_a(psi)
341 safe_deallocate_a(psi2)
354 subroutine berry_potential(st, namespace, space, mesh, latt, e_field, pot)
355 type(states_elec_t),
intent(in) :: st
356 type(namespace_t),
intent(in) :: namespace
357 class(space_t),
intent(in) :: space
358 class(mesh_t),
intent(in) :: mesh
359 type(lattice_vectors_t),
intent(in) :: latt
360 real(real64),
intent(in) :: e_field(:)
361 real(real64),
intent(out) :: pot(:,:)
363 integer :: ispin, idir
364 complex(real64) :: factor, det
368 if (latt%nonorthogonal)
then
369 call messages_not_implemented(
"Berry phase for non-orthogonal cells", namespace=namespace)
373 call messages_not_implemented(
"Berry phase with k-points", namespace=namespace)
376 pot(1:mesh%np, 1:st%d%nspin) = m_zero
378 do ispin = 1, st%d%nspin
379 do idir = 1, space%periodic_dim
380 if (abs(e_field(idir)) > m_epsilon)
then
383 if (abs(det) > m_epsilon)
then
384 factor = e_field(idir) * (norm2(latt%rlattice(:,idir)) / (m_two*m_pi)) / det
388 write(message(1),*)
"Divide by zero: dir = ", idir,
" Berry-phase determinant = ", det
389 call messages_fatal(1, namespace=namespace)
391 pot(1:mesh%np, ispin) = pot(1:mesh%np, ispin) + &
392 aimag(factor *
exp(m_two * m_pi * m_zi * mesh%x(1:mesh%np, idir) / norm2(latt%rlattice(:,idir))))
402 real(real64) function berry_energy_correction(st, space, mesh, latt, e_field, vberry) result(delta)
403 type(states_elec_t),
intent(in) :: st
404 class(space_t),
intent(in) :: space
405 class(mesh_t),
intent(in) :: mesh
406 type(lattice_vectors_t),
intent(in) :: latt
407 real(real64),
intent(in) :: e_field(:)
408 real(real64),
intent(in) :: vberry(:,:)
410 integer :: ispin, idir
416 do ispin = 1, st%d%nspin
417 delta = delta - dmf_dotp(mesh, st%rho(1:mesh%np, ispin), vberry(1:mesh%np, ispin))
421 do idir = 1, space%periodic_dim
422 delta = delta -
berry_dipole(st, mesh, latt, space, idir) * e_field(idir)
double log(double __x) __attribute__((__nothrow__
double exp(double __x) __attribute__((__nothrow__
subroutine, public berry_perform_internal_scf(this, namespace, space, eigensolver, gr, st, hm, iter, ks, ions, ext_partners)
subroutine berry_phase_matrix(st, mesh, latt, space, nst, ik, ik2, gvector, matrix)
complex(real64) function berry_phase_det(st, mesh, latt, space, dir, ik)
real(real64) function, public berry_energy_correction(st, space, mesh, latt, e_field, vberry)
subroutine, public berry_potential(st, namespace, space, mesh, latt, e_field, pot)
local potential for electric enthalpy of uniform field in single-point Berry phase
subroutine, public berry_init(this, namespace)
subroutine, public calc_dipole(dipole, space, mesh, st, ions)
real(real64) function, public berry_dipole(st, mesh, latt, space, dir)
Uses the single-point Berry`s phase method to calculate dipole moment in a periodic system.
real(real64), parameter, public m_two
real(real64), parameter, public m_zero
real(real64), parameter, public m_pi
some mathematical constants
This module implements the underlying real-space grid.
This module defines classes and functions for interaction partners.
This module defines various routines, operating on mesh functions.
subroutine, public dmf_multipoles(mesh, ff, lmax, multipole, mask)
This routine calculates the multipoles of a function ff.
This module defines the meshes, which are used in Octopus.
subroutine, public messages_not_implemented(feature, namespace)
character(len=256), dimension(max_lines), public message
to be output by fatal, warning
subroutine, public messages_info(no_lines, iunit, debug_only, stress, all_nodes, namespace)
This module handles spin dimensions of the states and the k-point distribution.
subroutine, public v_ks_calc(ks, namespace, space, hm, st, ions, ext_partners, calc_eigenval, time, calc_energy, calc_current, force_semilocal)
Describes mesh distribution to nodes.
The states_elec_t class contains all electronic wave functions.