ConvRelDens
ConvRelDens
Section SCF::Convergence
Type float
Default 1e-6
Relative convergence of the density:
$\varepsilon = \frac{1}{N} \mathrm{ConvAbsDens}$.
N is the total number of electrons in the problem. A zero value means do not use this criterion.
If you reduce this value, you should also reduce EigensolverTolerance to a value of roughly 1/10 of ConvRelDens to avoid convergence problems.
If this criterion is used, the SCF loop will only stop once it is
fulfilled for two consecutive iterations.
Source information
scf/criteria_factory.F90 : 109
call parse_variable(namespace, 'ConvRelDens', CNST(1e-6), conv_rel_dens)
Featured in tutorials
- Unsorted/Magnons
- Unsorted/Parallelization_and_performance
- Unsorted/Sternheimer_linear_response
- Unsorted/Large_systems:__the_Fullerene_molecule
- Unsorted/Unfolding
- Basics/Basic_input_options
- Periodic_Systems/Unfolding
- Periodic_Systems/Magnons
- Response/Optical_spectra_from_Sternheimer
- Response/Optical_spectra_from_time-propagation
Featured in chapters of the manual:
Featured in testfiles
- finite_systems_1d/02-neon_mpi.01-ground_state-IP_par_domains.inp
- finite_systems_1d/02-neon_mpi.02-ground_state-kli_par_domains.inp
- finite_systems_1d/03-He-Hartree-Fock.01-gs.inp
- finite_systems_2d/02-fock-darwin.04-ground_state.inp
- finite_systems_2d/04-biot_savart.01-gs.inp
- finite_systems_3d/01-carbon_atom.01-psf_l0.inp
- finite_systems_3d/01-carbon_atom.02-psf_l1.inp
- finite_systems_3d/01-carbon_atom.03-static_field.inp
- finite_systems_3d/01-carbon_atom.04-smear.inp
- finite_systems_3d/04-jellium.01-ground_state.inp
- finite_systems_3d/08-spin_orbit_coupling_full.01-hgh.inp
- finite_systems_3d/08-spin_orbit_coupling_full.02-rkb.inp
- finite_systems_3d/10-fullerene.01-gs.inp
- finite_systems_3d/12-forces.01-N2_gs.inp
- finite_systems_3d/12-forces.02-N2_gs.inp
- finite_systems_3d/12-forces.03-N2_gs.inp
- finite_systems_3d/14-fullerene_unpacked.01-gs.inp
- finite_systems_3d/15-fullerene_stdlcao.01-gs.inp
- finite_systems_3d/29-pcm_chlorine_anion.01-ground_state-n60.inp
- finite_systems_3d/29-pcm_chlorine_anion.03-ground_state-n60-poisson.inp
- finite_systems_3d/29-pcm_chlorine_anion.04-ground_state-n240.inp
- finite_systems_3d/35-slater_x.01-gs.inp
- finite_systems_3d/35-slater_x.02-gs_spinors.inp
- finite_systems_3d/36-kli_x.01-gs.inp
- finite_systems_3d/36-kli_x.02-gs_spinors.inp
- functionals/01-xc_1d.01-wfs-lda.inp
- functionals/01-xc_1d.02-wfs-hf.inp
- functionals/02-xc_2d.01-hartree.inp
- functionals/02-xc_2d.02-hf.inp
- functionals/04-oep.01-jellium-lsda.inp
- functionals/04-oep.02-jellium-exx_kli.inp
- functionals/04-oep.03-jellium-full_exx.inp
- functionals/05-ks_inversion.01-target_density.inp
- functionals/07-sic.01-gs.inp
- functionals/14-libvdwxc_Be_hcp.01-vdwdfcx.inp
- functionals/16-dressed-rdmft.01-ip.inp
- functionals/18-mgga.01-br89.inp
- functionals/18-mgga.02-br89_oep.inp
- lda_u/01-nio.01-U5-gs.inp
- lda_u/02-ACBN0.01-nio.inp
- lda_u/06-laser.01-gs.inp
- lda_u/09-basis_from_states.01-lda.inp
- lda_u/10-intersite.02-graphite.inp
- linear_response/01-casida.01-gs.inp
- linear_response/01-casida.03-unocc.inp
- linear_response/01-casida.04-unocc_restart.inp
- linear_response/02-h2o_pol_lr.01_h2o_gs.inp
- linear_response/04-vib_modes.01-ground_state.inp
- linear_response/06-vib_modes_fd.01-ground_state.inp
- linear_response/06-vib_modes_fd.01-vib_modes_fd.inp
- maxwell/07-mode-resolved-maxwell-ks-propagation.01-1D-Helium-ground-state.inp
- maxwell/07-mode-resolved-maxwell-ks-propagation.02-kick-of-the-electronic-subsystem.inp
- modelmb/01-cosh_2e_1d.01-gs.inp
- multisystem/12-electronic_subsystem_propagators.01-gs.inp
- optimal_control/01-asym_doublewell.01-ground_state.inp
- optimal_control/03-localtarget.04-gs-mp.inp
- optimal_control/05-adw.01-ground_state.inp
- optimal_control/05-adw.02-unocc.inp
- optimal_control/06-zbr98.01-ground_state.inp
- optimal_control/07-qoct+tddft.01-ground_state.inp
- optimal_control/07-qoct+tddft.02-oct.inp
- optimal_control/08-velocities.01-ground_state.inp
- optimal_control/08-velocities.02-oct.inp
- optimal_control/09-density+current.01-ground_state.inp
- optimal_control/10-current.01-ground_state.inp
- optimal_control/11-classical.01-ground_state.inp
- periodic_systems/04-silicon.01-gs.inp
- periodic_systems/06-h2o_pol_lr.01_gs.inp
- periodic_systems/06-h2o_pol_lr.02_kdotp.inp
- periodic_systems/06-h2o_pol_lr.03_emresp.inp
- periodic_systems/08-benzene_supercell.01-gs.inp
- periodic_systems/12-boron_nitride.01-gs.inp
- periodic_systems/12-boron_nitride.02-gs_gamma.inp
- periodic_systems/13-primitive.01-diamond.inp
- periodic_systems/13-primitive.03-bcc_iron.inp
- periodic_systems/14-silicon_shifts.01-gs.inp
- periodic_systems/15-bandstructure.01-gs.inp
- periodic_systems/15-bandstructure.02-unocc.inp
- periodic_systems/19-unfolding.01-gs.inp
- periodic_systems/19-unfolding.03-unocc.inp
- periodic_systems/21-magnon.01-gs.inp
- periodic_systems/23-hybrids.01-ace.inp
- periodic_systems/23-hybrids.02-ace_accel.inp
- periodic_systems/23-hybrids.03-Si_pbe0.inp
- periodic_systems/23-hybrids.04-parstates.inp
- pseudopotentials/02-cu2_hgh.01_gs.inp
- pseudopotentials/02-cu2_hgh.02_gs_current.inp
- pseudopotentials/04-carbon_dojo_psml.01-gs.inp
- pseudopotentials/05-carbon_dojo_pbesol.01-gs.inp
- pseudopotentials/06-carbon_dojo_pbe.01-gs.inp
- pseudopotentials/07-carbon_dojo_lda.01-gs.inp
- pseudopotentials/08-carbon_fhi.01-gs.inp
- pseudopotentials/09-carbon_cpi.01-gs.inp
- pseudopotentials/14-carbon_dojo_psp8.01-gs.inp
- real_time/01-propagators.01-gs.inp
- real_time/02-propagators.01-gs.inp
- real_time/03-td_self_consistent.01-gs.inp
- real_time/08-laser.01-ground_state.inp
- real_time/11-tdmagnetic.01-gs.inp
- real_time/14-absorption-spinors.01-gs.inp
- symmetries/09-symmetrization_gga.01-spg143_nosym.inp
- symmetries/09-symmetrization_gga.02-spg143_sym.inp