Octopus
propagator_exp_gauss2.F90
Go to the documentation of this file.
1!! Copyright (C) 2024 Sebastian Ohlmann
2!!
3!! This program is free software; you can redistribute it and/or modify
4!! it under the terms of the GNU General Public License as published by
5!! the Free Software Foundation; either version 2, or (at your option)
6!! any later version.
7!!
8!! This program is distributed in the hope that it will be useful,
9!! but WITHOUT ANY WARRANTY; without even the implied warranty of
10!! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11!! GNU General Public License for more details.
12!!
13!! You should have received a copy of the GNU General Public License
14!! along with this program; if not, write to the Free Software
15!! Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16!! 02110-1301, USA.
17!!
18
19#include "global.h"
20
23 use debug_oct_m
24 use global_oct_m
26
27 implicit none
28
29 private
30 public :: &
32
37 private
39
41 procedure propagator_exp_gauss2_constructor
42 end interface propagator_exp_gauss2_t
43
44 !# doc_start exp_gauss2_propagation_operations
45 ! Specific exponential mid-point propagation operations identifiers
46 character(len=ALGO_LABEL_LEN), public, parameter :: &
47 EXP_GAUSS2_START = 'EXP_GAUSS2_START', &
48 exp_gauss2_finish = 'EXP_GAUSS2_FINISH', &
49 exp_gauss2_extrapolate = 'EXP_GAUSS2_EXTRAPOLATE', &
50 exp_gauss2_propagate = 'EXP_GAUSS2_PROPAGATE'
51
52 ! Specific exponential mid-point propagation operations
53 type(algorithmic_operation_t), public, parameter :: &
54 OP_EXP_GAUSS2_START = algorithmic_operation_t(exp_gauss2_start, 'Starting exponential with Gauss order 1'), &
55 op_exp_gauss2_finish = algorithmic_operation_t(exp_gauss2_finish, 'Finishing exponential with Gauss order 1'), &
57 op_exp_gauss2_propagate = algorithmic_operation_t(exp_gauss2_propagate, 'Propagation step for exponential midpoint')
58 !# doc_end
59
60contains
61
62 ! ---------------------------------------------------------
63 function propagator_exp_gauss2_constructor(dt) result(this)
64 real(real64), intent(in) :: dt
65 type(propagator_exp_gauss2_t), pointer :: this
66
68
69 allocate(this)
70
71 this%predictor_corrector = .false.
72 this%start_operation = op_exp_gauss2_start
73 this%final_operation = op_exp_gauss2_finish
74
75 call this%add_operation(op_exp_gauss2_extrapolate)
76 call this%add_operation(op_exp_gauss2_propagate)
77 call this%add_operation(op_update_couplings)
78 call this%add_operation(op_update_interactions)
79 call this%add_operation(op_iteration_done)
80 call this%add_operation(op_rewind_algorithm)
81
82 this%algo_steps = 1
83 this%dt = dt
84
87
89
90
91!! Local Variables:
92!! mode: f90
93!! coding: utf-8
94!! End:
This module implements the basic elements defining algorithms.
Definition: algorithm.F90:141
type(algorithmic_operation_t), parameter, public op_iteration_done
Definition: algorithm.F90:179
type(algorithmic_operation_t), parameter, public op_rewind_algorithm
Definition: algorithm.F90:179
type(algorithmic_operation_t), parameter, public op_update_couplings
Definition: algorithm.F90:179
type(algorithmic_operation_t), parameter, public op_update_interactions
Definition: algorithm.F90:179
type(propagator_exp_gauss2_t) function, pointer propagator_exp_gauss2_constructor(dt)
character(len=algo_label_len), parameter, public exp_gauss2_finish
type(algorithmic_operation_t), parameter, public op_exp_gauss2_extrapolate
character(len=algo_label_len), parameter, public exp_gauss2_propagate
character(len=algo_label_len), parameter, public exp_gauss2_extrapolate
type(algorithmic_operation_t), parameter, public op_exp_gauss2_finish
type(algorithmic_operation_t), parameter, public op_exp_gauss2_propagate
This module implements the basic propagator framework.
Definition: propagator.F90:117
Descriptor of one algorithmic operation.
Definition: algorithm.F90:163
Implements the an exponential RK scheme with Gauss collocation points, s=2 see also Hochbruck,...
Abstract class implementing propagators.
Definition: propagator.F90:138