Octopus
propagator_exp_gauss2.F90 File Reference

Go to the source code of this file.

Modules

module  propagator_exp_gauss2_oct_m
 

Data Types

interface  propagator_exp_gauss2_oct_m::propagator_exp_gauss2_t
 Implements the an exponential RK scheme with Gauss collocation points, s=2 see also Hochbruck, M. & Ostermann, A.: Exponential Runge–Kutta methods for parabolic problems. Applied Numerical Mathematics 53, 323–339 (2005). More...
 

Functions/Subroutines

type(propagator_exp_gauss2_t) function, pointer propagator_exp_gauss2_oct_m::propagator_exp_gauss2_constructor (dt)
 

Variables

character(len=algo_label_len), parameter, public propagator_exp_gauss2_oct_m::exp_gauss2_start = 'EXP_GAUSS2_START'
 
character(len=algo_label_len), parameter, public propagator_exp_gauss2_oct_m::exp_gauss2_finish = 'EXP_GAUSS2_FINISH'
 
character(len=algo_label_len), parameter, public propagator_exp_gauss2_oct_m::exp_gauss2_extrapolate = 'EXP_GAUSS2_EXTRAPOLATE'
 
character(len=algo_label_len), parameter, public propagator_exp_gauss2_oct_m::exp_gauss2_propagate = 'EXP_GAUSS2_PROPAGATE'
 
type(algorithmic_operation_t), parameter, public propagator_exp_gauss2_oct_m::op_exp_gauss2_start = algorithmic_operation_t(EXP_GAUSS2_START, 'Starting exponential with Gauss order 1')
 
type(algorithmic_operation_t), parameter, public propagator_exp_gauss2_oct_m::op_exp_gauss2_finish = algorithmic_operation_t(EXP_GAUSS2_FINISH, 'Finishing exponential with Gauss order 1')
 
type(algorithmic_operation_t), parameter, public propagator_exp_gauss2_oct_m::op_exp_gauss2_extrapolate = algorithmic_operation_t(EXP_GAUSS2_EXTRAPOLATE, 'Extrapolation step')
 
type(algorithmic_operation_t), parameter, public propagator_exp_gauss2_oct_m::op_exp_gauss2_propagate = algorithmic_operation_t(EXP_GAUSS2_PROPAGATE, 'Propagation step for exponential midpoint')