MaxwellFunctions
MaxwellFunctions
Section Time-Dependent
Type block
This block specifies the shape of a "spatial-dependent function", such as the
envelope needed when using the MaxwellFunctions block. Each line in the block
specifies one function. The first element of each line will be a string
that defines the name of the function. The second element specifies which type
of function we are using; in the following we provide an example for each of the
possible types:
Options:
- mxf_const_wave:
%MaxwellFunctions
"function-name" | mxf_const_wave | kx | ky | kz | x0 | y0 | z0
%The function is constant plane wave $ f(x,y,z) = a0 * \cos( kx*(x-x0) + ky*(y-y0) + kz*(z-z0) ) $
- mxf_const_phase:
%MaxwellFunctions
"function-name" | mxf_const_phase | kx | ky | kz | x0 | y0 | z0
%The function is a constant phase of $ f(x,y,z) = a0 * (kx * x0 + ky * y0 + kz * z0) $
- mxf_gaussian_wave:
%MaxwellFunctions
"function-name" | mxf_gaussian_wave | kx | ky | kz | x0 | y0 | z0 | width
%The function is a Gaussian, $ f(x,y,z) = a0 * \exp( -( kx*(x-x0) + ky*(y-y0) + kz*(z-z0) )^2 / (2 width^2) ) $
- mxf_cosinoidal_wave:
%MaxwellFunctions
"function-name" | mxf_cosinoidal_wave | kx | ky | kz | x0 | y0 | z0 | width
%$ f(x,y,z) = \cos( \frac{\pi}{2} \frac{kx*(x-x0)+ky*(y-y0)+kz*(z-z0)-2 width}{width} + \pi ) $
If $ | kxx + kyy + kz*z - x0 | > \xi_0 $, then $ f(x,y,z) = 0 $.
- mxf_logistic_wave:
%MaxwellFunctions
"function-name" | mxf_logistic_wave | kx | ky | kz | x0 | y0 | z0 | growth | width
%The function is a logistic function, $ f(x,y,z) = a0 * 1/(1+\exp(growth*(kx*(x-x0)+ky*(y-y0)+kz*(kz*(z-z0))+width/2))) * 1/(1+\exp(-growth*(kx*(x-x0)+ky*(y-y0)+kz*(kz*(z-z0))-width/2))) $
- mxf_trapezoidal_wave:
%MaxwellFunctions
"function-name" | mxf_trapezoidal_wave | kx | ky | kz | x0 | y0 | z0 | growth | width
%The function is a logistic function,
$ f(x,y,z) = a0 * ( ( 1-growth*(k*(r-r0)-width/2)*\Theta(k*(r-r0)-width/2))*\Theta(-(k*(r-r0)+width/2+1/growth)) $
$ \qquad \qquad \qquad + (-1+growth*(k*(r-r0)+width/2)*\Theta(k*(r-r0)+width/2))*\Theta(-(k*(r-r0)-width/2+1/growth)) ) $
- mxf_from_expr:
%MaxwellFunctions
"function-name" | mxf_from_expr | "expression"
%The temporal shape of the field is given as an expression (e.g., cos(2.0x-3y+4*z). The letter x, y, z means spatial coordinates, obviously. The expression is used to construct the function f that defines the field.