Mixing
Name MixField
Section SCF::Mixing
Type integer
Selects what should be mixed during the SCF cycle. Note that
currently the exact-exchange part of hybrid functionals is not
mixed at all, which would require wavefunction-mixing, not yet
implemented. This may lead to instabilities in the SCF cycle,
so starting from a converged LDA/GGA calculation is recommended
for hybrid functionals. The default depends on the TheoryLevel
and the exchange-correlation potential used.
Options:
- none:
No mixing is done. This is the default for independent
particles.
- potential:
The Kohn-Sham potential is mixed. This is the default for other cases.
- density:
Mix the density.
- states:
(Experimental) Mix the states. In this case, the mixing is always linear.
Name Mixing
Section SCF::Mixing
Type float
Default 0.3
The linear, Broyden and DIIS scheme depend on a "mixing parameter", set by this variable.
Must be 0 < Mixing <= 1.
Name MixingPreconditioner
Section SCF::Mixing
Type logical
Default false
(Experimental) If set to yes, Octopus will use a preconditioner
for the mixing operator.
This preconditioner is disabled for systems with dimension other than 3.
Name MixingResidual
Section SCF::Mixing
Type float
Default 0.05
In the DIIS mixing it is benefitial to include a bit of
residual into the mixing. This parameter controls this amount.
Name MixingRestart
Section SCF::Mixing
Type integer
Default 20
In the Broyden and Bowler_Gillan schemes, the mixing is restarted after
the number of iterations given by this variable.
Set this to zero to disable restarting the mixing.
Name MixingScheme
Section SCF::Mixing
Type integer
Default broyden
The scheme used to produce, at each iteration in the self-consistent cycle
that attempts to solve the Kohn-Sham equations, the input density from the value
of the input and output densities of previous iterations.
Options:
- linear:
Simple linear mixing.
- broyden:
Broyden scheme [C. G Broyden, Math. Comp. 19, 577 (1965);
D. D. Johnson, Phys. Rev. B 38, 12807 (1988)].
The scheme is slightly adapted, see the comments in the code.
For complex functions (e.g. Sternheimer with EMEta > 0), we use the generalization
with a complex dot product.
- diis:
Direct inversion in the iterative subspace (diis)
scheme [P. Pulay, Chem. Phys. Lett., 73, 393
(1980)] as described in [G. Kresse, and J. Hurthmueller,
Phys. Rev. B 54, 11169 (1996)].
- bowler_gillan:
The Guaranteed-reduction modification of the Pulay scheme by
Bowler and Gillan [D. R. Bowler and M. J. Gillan,
Chem. Phys. Lett. 325, 473 (2000)].
Name MixInterval
Section SCF::Mixing
Type integer
Default 1
When this variable is set to a value different than 1 (the
default) a combined mixing scheme will be used, with MixInterval
- 1 steps of linear mixing followed by 1 step of the selected
mixing. For the moment this variable only works with DIIS mixing.
Name MixNumberSteps
Section SCF::Mixing
Type integer
Default 4
In the Broyden and Bowler_Gillan schemes, the new input density or potential is constructed
from the values of the densities/potentials of a given number of previous iterations.
This number is set by this variable. Must be greater than 1.