Navigation :
Manual
Input Variables
-
Atomic Orbitals
-
Calculation Modes
-
ClassicalParticles
-
DFTBPlusInterface
-
Execution
-
Hamiltonian
--
DFT+U
--
PCM
--- PCMCalcMethod
--- PCMCalculation
--- PCMCavity
--- PCMChargeSmearNN
--- PCMDebyeRelaxTime
--- PCMDrudeLDamping
--- PCMDrudeLOmega
--- PCMDynamicEpsilon
--- PCMEoMInitialCharges
--- PCMEpsilonModel
--- PCMGamessBenchmark
--- PCMKick
--- PCMLocalField
--- PCMQtotTol
--- PCMRadiusScaling
--- PCMRenormCharges
--- PCMSmearingFactor
--- PCMSolute
--- PCMSpheresOnH
--- PCMStaticEpsilon
--- PCMTDLevel
--- PCMTessMinDistance
--- PCMTessSubdivider
--- PCMUpdateIter
--- PCMVdWRadii
--
Poisson
--
XC
-- AdaptivelyCompressedExchange
-- CalculateSelfInducedMagneticField
-- ClassicalPotential
-- CurrentDensity
-- EnablePhotons
-- EwaldAlpha
-- ExternalCurrent
-- FilterPotentials
-- ForceTotalEnforce
-- GaugeFieldDelay
-- GaugeFieldDynamics
-- GaugeFieldPropagate
-- GaugeVectorField
-- GyromagneticRatio
-- MassScaling
-- MaxwellHamiltonianOperator
-- MaxwellMediumCalculation
-- ParticleMass
-- RashbaSpinOrbitCoupling
-- RelativisticCorrection
-- RiemannSilbersteinSign
-- SOStrength
-- StaticElectricField
-- StaticMagneticField
-- StaticMagneticField2DGauge
-- TheoryLevel
-- TimeZero
-
Linear Response
-
Math
-
Maxwell
-
MaxwellStates
-
Mesh
-
Output
-
SCF
-
States
-
System
-
Time-Dependent
-
Utilities
-
Alphabetic Index
Tutorials
Developers
Releases
PCMDrudeLOmega
PCMDrudeLOmega
Section Hamiltonian::PCM
Type float
Default \sqrt{1/(\varepsilon_0-1)}
Resonance frequency of the solvent within Drude-Lorentz model ($\omega_0$).
Recall Drude-Lorentz dielectric function: $\varepsilon(\omega)=1+\frac{A}{\omega_0^2-\omega^2+i\gamma\omega}$
Default values of $\omega_0$ guarantee to recover static dielectric constant.
Source information
hamiltonian/pcm.F90 : 3257
call parse_variable ( namespace , 'PCMDrudeLOmega' , sqrt ( M_ONE / ( pcm % deb % eps_0 - M_ONE )), pcm % drl % w0 )