Octopus
lapack.F90 File Reference

Go to the source code of this file.

Modules

module  lapack_oct_m
 This module contains interfaces for LAPACK routines.
 

Data Types

interface  lapack_oct_m::lapack_potrf
 computes the Cholesky factorization of a real symmetric positive definite matrix A. More...
 
interface  lapack_oct_m::lapack_sygv
 Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form \(Ax=(\lambda)Bx, ABx=(\lambda)x, \mbox{ or } BAx=(\lambda)x \). Here A and B are assumed to be symmetric and B is also positive definite. More...
 
interface  lapack_oct_m::lapack_hegv
 Computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form \(Ax=(\lambda)Bx, ABx=(\lambda)x, \mbox{ or } BAx=(\lambda)x \). Here A and B are assumed to be Hermitian and B is also positive definite. More...
 
interface  lapack_oct_m::dgeev
 Computes for an \( N \times N \) complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. More...
 
interface  lapack_oct_m::zgeev
 
interface  lapack_oct_m::lapack_gesvx
 
interface  lapack_oct_m::lapack_syev
 Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. More...
 
interface  lapack_oct_m::lapack_heev
 Computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A. More...
 
interface  lapack_oct_m::dsyevx
 
interface  lapack_oct_m::zheevx
 
interface  lapack_oct_m::lapack_geqrf
 Computes a QR factorization of a real \(m \times n\) matrix A: More...
 
interface  lapack_oct_m::lapack_orgqr
 Generates an \( M \times N \) real matrix Q with orthonormal columns, which is defined as the first N columns of a product of K elementary reflectors of order M. More...
 
interface  lapack_oct_m::lapack_sygvx
 Computes selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite eigenproblem, of the form \(Ax=(\lambda)Bx, ABx=(\lambda)x, \mbox{ or } BAx=(\lambda)x \). Here A and B are assumed to be symmetric and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues. More...
 
interface  lapack_oct_m::lapack_hegvx
 Computes selected eigenvalues, and optionally, eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form \(Ax=(\lambda)Bx, ABx=(\lambda)x, \mbox{ or } BAx=(\lambda)x \). Here A and B are assumed to be Hermitian and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues. More...
 
interface  lapack_oct_m::lapack_gelss
 
interface  lapack_oct_m::lapack_getrf
 
interface  lapack_oct_m::lapack_getri
 
interface  lapack_oct_m::lapack_sytrf
 
interface  lapack_oct_m::lapack_sytri