Octopus
|
This module contains interfaces for LAPACK routines. More...
This module contains interfaces for LAPACK routines.
Data Types | |
interface | dgeev |
Computes for an \( N \times N \) complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. More... | |
interface | dsyevx |
interface | lapack_gelss |
interface | lapack_geqrf |
Computes a QR factorization of a real \(m \times n\) matrix A: More... | |
interface | lapack_gesvx |
interface | lapack_getrf |
interface | lapack_getri |
interface | lapack_heev |
Computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A. More... | |
interface | lapack_hegv |
Computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form \(Ax=(\lambda)Bx, ABx=(\lambda)x, \mbox{ or } BAx=(\lambda)x \). Here A and B are assumed to be Hermitian and B is also positive definite. More... | |
interface | lapack_hegvx |
Computes selected eigenvalues, and optionally, eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form \(Ax=(\lambda)Bx, ABx=(\lambda)x, \mbox{ or } BAx=(\lambda)x \). Here A and B are assumed to be Hermitian and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues. More... | |
interface | lapack_orgqr |
Generates an \( M \times N \) real matrix Q with orthonormal columns, which is defined as the first N columns of a product of K elementary reflectors of order M. More... | |
interface | lapack_potrf |
computes the Cholesky factorization of a real symmetric positive definite matrix A. More... | |
interface | lapack_syev |
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. More... | |
interface | lapack_sygv |
Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form \(Ax=(\lambda)Bx, ABx=(\lambda)x, \mbox{ or } BAx=(\lambda)x \). Here A and B are assumed to be symmetric and B is also positive definite. More... | |
interface | lapack_sygvx |
Computes selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite eigenproblem, of the form \(Ax=(\lambda)Bx, ABx=(\lambda)x, \mbox{ or } BAx=(\lambda)x \). Here A and B are assumed to be symmetric and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues. More... | |
interface | lapack_sytrf |
interface | lapack_sytri |
interface | zgeev |
interface | zheevx |