Octopus
lapack_oct_m Module Reference

This module contains interfaces for LAPACK routines. More...

Detailed Description

This module contains interfaces for LAPACK routines.

Data Types

interface  dgeev
 Computes for an \( N \times N \) complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. More...
 
interface  dsyevx
 
interface  lapack_gelss
 
interface  lapack_geqrf
 Computes a QR factorization of a real \(m \times n\) matrix A: More...
 
interface  lapack_gesvx
 
interface  lapack_getrf
 
interface  lapack_getri
 
interface  lapack_heev
 Computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A. More...
 
interface  lapack_hegv
 Computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form \(Ax=(\lambda)Bx, ABx=(\lambda)x, \mbox{ or } BAx=(\lambda)x \). Here A and B are assumed to be Hermitian and B is also positive definite. More...
 
interface  lapack_hegvx
 Computes selected eigenvalues, and optionally, eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form \(Ax=(\lambda)Bx, ABx=(\lambda)x, \mbox{ or } BAx=(\lambda)x \). Here A and B are assumed to be Hermitian and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues. More...
 
interface  lapack_orgqr
 Generates an \( M \times N \) real matrix Q with orthonormal columns, which is defined as the first N columns of a product of K elementary reflectors of order M. More...
 
interface  lapack_potrf
 computes the Cholesky factorization of a real symmetric positive definite matrix A. More...
 
interface  lapack_syev
 Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. More...
 
interface  lapack_sygv
 Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form \(Ax=(\lambda)Bx, ABx=(\lambda)x, \mbox{ or } BAx=(\lambda)x \). Here A and B are assumed to be symmetric and B is also positive definite. More...
 
interface  lapack_sygvx
 Computes selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite eigenproblem, of the form \(Ax=(\lambda)Bx, ABx=(\lambda)x, \mbox{ or } BAx=(\lambda)x \). Here A and B are assumed to be symmetric and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues. More...
 
interface  lapack_sytrf
 
interface  lapack_sytri
 
interface  zgeev
 
interface  zheevx