Octopus
lapack_oct_m::lapack_potrf Interface Reference

computes the Cholesky factorization of a real symmetric positive definite matrix A. More...

Detailed Description

computes the Cholesky factorization of a real symmetric positive definite matrix A.

The factorization has the form

\[ A = U^T U, \mbox{ if UPLO} = 'U', \]

or

\[ A = L L^T, \mbox{ if UPLO} = 'L', \]

where U is an upper triangular matrix and L is lower triangular.

This is the block version of the algorithm, calling Level 3 BLAS.

Definition at line 137 of file lapack.F90.

Public Member Functions

subroutine dpotrf (uplo, n, a, lda, info)
 
subroutine zpotrf (uplo, n, a, lda, info)
 

Member Function/Subroutine Documentation

◆ dpotrf()

subroutine lapack_oct_m::lapack_potrf::dpotrf ( character(1), intent(in)  uplo,
integer, intent(in)  n,
real(real64), intent(inout)  a,
integer, intent(in)  lda,
integer, intent(out)  info 
)

Definition at line 138 of file lapack.F90.

◆ zpotrf()

subroutine lapack_oct_m::lapack_potrf::zpotrf ( character(1), intent(in)  uplo,
integer, intent(in)  n,
complex(real64), intent(inout)  a,
integer, intent(in)  lda,
integer, intent(out)  info 
)

Definition at line 148 of file lapack.F90.


The documentation for this interface was generated from the following file: