Octopus
scalapack.F90 File Reference

Go to the source code of this file.

Modules

module  scalapack_oct_m
 This module contains interfaces for ScaLAPACK routines Interfaces are from http:
 

Data Types

interface  scalapack_oct_m::iceil
 
interface  scalapack_oct_m::descinit
 
interface  scalapack_oct_m::infog2l
 
interface  scalapack_oct_m::scalapack_geqrf
 Computes a QR factorization of a real distributed \( m \times n\). More...
 
interface  scalapack_oct_m::scalapack_orgqr
 Generates an \( m \times n\) real distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal columns, which is defined as the first N columns of a product of K elementary reflectors of order M. More...
 
interface  scalapack_oct_m::pdgesv
 
interface  scalapack_oct_m::pzgesv
 
interface  scalapack_oct_m::scalapack_syev
 Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A by calling the recommended sequence of ScaLAPACK routines. More...
 
interface  scalapack_oct_m::scalapack_syevx
 Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A by calling the recommended sequence of ScaLAPACK routines. Eigenvalues/vectors can be selected by specifying a range of values or a range of indices for the desired eigenvalues. More...
 
interface  scalapack_oct_m::scalapack_sygvx
 Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized SY-definite eigenproblem, of the form \( sub( A ) x=(\lambda) sub( B ) x, sub( A ) sub( B ) x=(\lambda) x, \mbox{ or } sub( B ) sub( A ) x=(\lambda) x \). Here sub(A) denoting A(IA:IA+N-1, JA:JA+N-1) is assumed to be SY, and sub(B) denoting B(IB:IB+N-1, JB:JB+N-1) is assumed to be symmetric positive definite. More...
 
interface  scalapack_oct_m::scalapack_hegvx
 Computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form \( sub( A ) x=(\lambda) sub( B ) x, sub( A ) sub( B ) x=(\lambda) x, \mbox{ or } sub( B ) sub( A ) x=(\lambda) x \). Here sub(A) denoting A(IA:IA+N-1, JA:JA+N-1) is assumed to be Hermitian, and sub(B) denoting B(IB:IB+N-1, JB:JB+N-1) is assumed to be Hermitian positive definite. More...
 
interface  scalapack_oct_m::scalapack_potrf
 Computes the Cholesky factorization of an \( n \times n \) real symmetric positive definite distributed matrix sub(A) denoting A(IA:IA+N-1, JA:JA+N-1). More...
 
interface  scalapack_oct_m::pzlacp3
 
interface  scalapack_oct_m::pdlacp3
 
interface  scalapack_oct_m::indxl2g
 
interface  scalapack_oct_m::indxg2l
 
interface  scalapack_oct_m::indxg2p