Octopus
|
This module contains interfaces for ScaLAPACK routines Interfaces are from http: More...
This module contains interfaces for ScaLAPACK routines Interfaces are from http:
Data Types | |
interface | descinit |
interface | iceil |
interface | indxg2l |
interface | indxg2p |
interface | indxl2g |
interface | infog2l |
interface | pdgesv |
interface | pdlacp3 |
interface | pzgesv |
interface | pzlacp3 |
interface | scalapack_geqrf |
Computes a QR factorization of a real distributed \( m \times n\). More... | |
interface | scalapack_hegvx |
Computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form \( sub( A ) x=(\lambda) sub( B ) x, sub( A ) sub( B ) x=(\lambda) x, \mbox{ or }
sub( B ) sub( A ) x=(\lambda) x \). Here sub(A) denoting A(IA:IA+N-1, JA:JA+N-1) is assumed to be Hermitian, and sub(B) denoting B(IB:IB+N-1, JB:JB+N-1) is assumed to be Hermitian positive definite. More... | |
interface | scalapack_orgqr |
Generates an \( m \times n\) real distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal columns, which is defined as the first N columns of a product of K elementary reflectors of order M. More... | |
interface | scalapack_potrf |
Computes the Cholesky factorization of an \( n \times n \) real symmetric positive definite distributed matrix sub(A) denoting A(IA:IA+N-1, JA:JA+N-1). More... | |
interface | scalapack_syev |
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A by calling the recommended sequence of ScaLAPACK routines. More... | |
interface | scalapack_syevx |
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A by calling the recommended sequence of ScaLAPACK routines. Eigenvalues/vectors can be selected by specifying a range of values or a range of indices for the desired eigenvalues. More... | |
interface | scalapack_sygvx |
Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized SY-definite eigenproblem, of the form \( sub( A ) x=(\lambda) sub( B ) x, sub( A ) sub( B ) x=(\lambda) x, \mbox{ or }
sub( B ) sub( A ) x=(\lambda) x \). Here sub(A) denoting A(IA:IA+N-1, JA:JA+N-1) is assumed to be SY, and sub(B) denoting B(IB:IB+N-1, JB:JB+N-1) is assumed to be symmetric positive definite. More... | |