Octopus
propagator_exp_gauss1.F90 File Reference

Go to the source code of this file.

Modules

module  propagator_exp_gauss1_oct_m
 

Data Types

interface  propagator_exp_gauss1_oct_m::propagator_exp_gauss1_t
 Implements the an exponential RK scheme with Gauss collocation points, s=1 see also Hochbruck, M. & Ostermann, A.: Exponential Runge–Kutta methods for parabolic problems. Applied Numerical Mathematics 53, 323–339 (2005). More...
 

Functions/Subroutines

type(propagator_exp_gauss1_t) function, pointer propagator_exp_gauss1_oct_m::propagator_exp_gauss1_constructor (dt)
 

Variables

character(len=algo_label_len), parameter, public propagator_exp_gauss1_oct_m::exp_gauss1_start = 'EXP_GAUSS1_START'
 
character(len=algo_label_len), parameter, public propagator_exp_gauss1_oct_m::exp_gauss1_finish = 'EXP_GAUSS1_FINISH'
 
character(len=algo_label_len), parameter, public propagator_exp_gauss1_oct_m::exp_gauss1_extrapolate = 'EXP_GAUSS1_EXTRAPOLATE'
 
character(len=algo_label_len), parameter, public propagator_exp_gauss1_oct_m::exp_gauss1_propagate = 'EXP_GAUSS1_PROPAGATE'
 
type(algorithmic_operation_t), parameter, public propagator_exp_gauss1_oct_m::op_exp_gauss1_start = algorithmic_operation_t(EXP_GAUSS1_START, 'Starting exponential with Gauss order 1')
 
type(algorithmic_operation_t), parameter, public propagator_exp_gauss1_oct_m::op_exp_gauss1_finish = algorithmic_operation_t(EXP_GAUSS1_FINISH, 'Finishing exponential with Gauss order 1')
 
type(algorithmic_operation_t), parameter, public propagator_exp_gauss1_oct_m::op_exp_gauss1_extrapolate = algorithmic_operation_t(EXP_GAUSS1_EXTRAPOLATE, 'Extrapolation step')
 
type(algorithmic_operation_t), parameter, public propagator_exp_gauss1_oct_m::op_exp_gauss1_propagate = algorithmic_operation_t(EXP_GAUSS1_PROPAGATE, 'Propagation step for exponential midpoint')