Octopus
|
Data Types | |
interface | propagator_exp_gauss1_t |
Implements the an exponential RK scheme with Gauss collocation points, s=1 see also Hochbruck, M. & Ostermann, A.: Exponential Runge–Kutta methods for parabolic problems. Applied Numerical Mathematics 53, 323–339 (2005). More... | |
Functions/Subroutines | |
type(propagator_exp_gauss1_t) function, pointer | propagator_exp_gauss1_constructor (dt) |
Variables | |
character(len=algo_label_len), parameter, public | exp_gauss1_start = 'EXP_GAUSS1_START' |
character(len=algo_label_len), parameter, public | exp_gauss1_finish = 'EXP_GAUSS1_FINISH' |
character(len=algo_label_len), parameter, public | exp_gauss1_extrapolate = 'EXP_GAUSS1_EXTRAPOLATE' |
character(len=algo_label_len), parameter, public | exp_gauss1_propagate = 'EXP_GAUSS1_PROPAGATE' |
type(algorithmic_operation_t), parameter, public | op_exp_gauss1_start = algorithmic_operation_t(EXP_GAUSS1_START, 'Starting exponential with Gauss order 1') |
type(algorithmic_operation_t), parameter, public | op_exp_gauss1_finish = algorithmic_operation_t(EXP_GAUSS1_FINISH, 'Finishing exponential with Gauss order 1') |
type(algorithmic_operation_t), parameter, public | op_exp_gauss1_extrapolate = algorithmic_operation_t(EXP_GAUSS1_EXTRAPOLATE, 'Extrapolation step') |
type(algorithmic_operation_t), parameter, public | op_exp_gauss1_propagate = algorithmic_operation_t(EXP_GAUSS1_PROPAGATE, 'Propagation step for exponential midpoint') |
|
private |
Definition at line 156 of file propagator_exp_gauss1.F90.
character(len=algo_label_len), parameter, public propagator_exp_gauss1_oct_m::exp_gauss1_start = 'EXP_GAUSS1_START' |
Definition at line 139 of file propagator_exp_gauss1.F90.
character(len=algo_label_len), parameter, public propagator_exp_gauss1_oct_m::exp_gauss1_finish = 'EXP_GAUSS1_FINISH' |
Definition at line 139 of file propagator_exp_gauss1.F90.
character(len=algo_label_len), parameter, public propagator_exp_gauss1_oct_m::exp_gauss1_extrapolate = 'EXP_GAUSS1_EXTRAPOLATE' |
Definition at line 139 of file propagator_exp_gauss1.F90.
character(len=algo_label_len), parameter, public propagator_exp_gauss1_oct_m::exp_gauss1_propagate = 'EXP_GAUSS1_PROPAGATE' |
Definition at line 139 of file propagator_exp_gauss1.F90.
type(algorithmic_operation_t), parameter, public propagator_exp_gauss1_oct_m::op_exp_gauss1_start = algorithmic_operation_t(EXP_GAUSS1_START, 'Starting exponential with Gauss order 1') |
Definition at line 146 of file propagator_exp_gauss1.F90.
type(algorithmic_operation_t), parameter, public propagator_exp_gauss1_oct_m::op_exp_gauss1_finish = algorithmic_operation_t(EXP_GAUSS1_FINISH, 'Finishing exponential with Gauss order 1') |
Definition at line 146 of file propagator_exp_gauss1.F90.
type(algorithmic_operation_t), parameter, public propagator_exp_gauss1_oct_m::op_exp_gauss1_extrapolate = algorithmic_operation_t(EXP_GAUSS1_EXTRAPOLATE, 'Extrapolation step') |
Definition at line 146 of file propagator_exp_gauss1.F90.
type(algorithmic_operation_t), parameter, public propagator_exp_gauss1_oct_m::op_exp_gauss1_propagate = algorithmic_operation_t(EXP_GAUSS1_PROPAGATE, 'Propagation step for exponential midpoint') |
Definition at line 146 of file propagator_exp_gauss1.F90.