![]() |
Octopus
|
Functions/Subroutines | |
| subroutine, public | exponential_midpoint (hm, namespace, space, gr, st, tr, time, dt, ions_dyn, ions, ext_partners, mc) |
| Exponential midpoint. More... | |
| subroutine, public | exponential_midpoint_predictor (hm, ks, namespace, space, gr, st, tr, time, dt, ions_dyn, ions, ext_partners, mc) |
| Exponential midpoint with prediction of the half time step This is equivalent to an explicit Magnus integration of second order, see equation 20 in Casas, F. & Iserles, A. Explicit Magnus expansions for nonlinear equations. J. Phys. A: Math. Gen. 39, 5445 (2006) [https: More... | |
| subroutine, public propagator_expmid_oct_m::exponential_midpoint | ( | type(hamiltonian_elec_t), intent(inout), target | hm, |
| type(namespace_t), intent(in) | namespace, | ||
| type(electron_space_t), intent(in) | space, | ||
| type(grid_t), intent(inout), target | gr, | ||
| type(states_elec_t), intent(inout), target | st, | ||
| type(propagator_base_t), intent(inout), target | tr, | ||
| real(real64), intent(in) | time, | ||
| real(real64), intent(in) | dt, | ||
| type(ion_dynamics_t), intent(inout) | ions_dyn, | ||
| type(ions_t), intent(inout) | ions, | ||
| type(partner_list_t), intent(in) | ext_partners, | ||
| type(multicomm_t), intent(inout) | mc | ||
| ) |
Exponential midpoint.
| [in,out] | mc | index and domain communicators |
Definition at line 153 of file propagator_expmid.F90.
| subroutine, public propagator_expmid_oct_m::exponential_midpoint_predictor | ( | type(hamiltonian_elec_t), intent(inout), target | hm, |
| type(v_ks_t), intent(inout) | ks, | ||
| type(namespace_t), intent(in) | namespace, | ||
| type(electron_space_t), intent(in) | space, | ||
| type(grid_t), intent(inout), target | gr, | ||
| type(states_elec_t), intent(inout), target | st, | ||
| type(propagator_base_t), intent(inout), target | tr, | ||
| real(real64), intent(in) | time, | ||
| real(real64), intent(in) | dt, | ||
| type(ion_dynamics_t), intent(inout) | ions_dyn, | ||
| type(ions_t), intent(inout) | ions, | ||
| type(partner_list_t), intent(in) | ext_partners, | ||
| type(multicomm_t), intent(inout) | mc | ||
| ) |
Exponential midpoint with prediction of the half time step This is equivalent to an explicit Magnus integration of second order, see equation 20 in Casas, F. & Iserles, A. Explicit Magnus expansions for nonlinear equations. J. Phys. A: Math. Gen. 39, 5445 (2006) [https:
| [in,out] | mc | index and domain communicators |
Definition at line 202 of file propagator_expmid.F90.