Octopus
propagator_expmid_oct_m Module Reference

Functions/Subroutines

subroutine, public exponential_midpoint (hm, namespace, space, gr, st, tr, time, dt, ions_dyn, ions, ext_partners, mc)
 Exponential midpoint. More...
 
subroutine, public exponential_midpoint_predictor (hm, ks, namespace, space, gr, st, tr, time, dt, ions_dyn, ions, ext_partners, mc)
 Exponential midpoint with prediction of the half time step This is equivalent to an explicit Magnus integration of second order, see equation 20 in Casas, F. & Iserles, A. Explicit Magnus expansions for nonlinear equations. J. Phys. A: Math. Gen. 39, 5445 (2006) [https: More...
 

Function/Subroutine Documentation

◆ exponential_midpoint()

subroutine, public propagator_expmid_oct_m::exponential_midpoint ( type(hamiltonian_elec_t), intent(inout), target  hm,
type(namespace_t), intent(in)  namespace,
type(electron_space_t), intent(in)  space,
type(grid_t), intent(inout), target  gr,
type(states_elec_t), intent(inout), target  st,
type(propagator_base_t), intent(inout), target  tr,
real(real64), intent(in)  time,
real(real64), intent(in)  dt,
type(ion_dynamics_t), intent(inout)  ions_dyn,
type(ions_t), intent(inout)  ions,
type(partner_list_t), intent(in)  ext_partners,
type(multicomm_t), intent(inout)  mc 
)

Exponential midpoint.

Parameters
[in,out]mcindex and domain communicators

Definition at line 153 of file propagator_expmid.F90.

◆ exponential_midpoint_predictor()

subroutine, public propagator_expmid_oct_m::exponential_midpoint_predictor ( type(hamiltonian_elec_t), intent(inout), target  hm,
type(v_ks_t), intent(inout)  ks,
type(namespace_t), intent(in)  namespace,
type(electron_space_t), intent(in)  space,
type(grid_t), intent(inout), target  gr,
type(states_elec_t), intent(inout), target  st,
type(propagator_base_t), intent(inout), target  tr,
real(real64), intent(in)  time,
real(real64), intent(in)  dt,
type(ion_dynamics_t), intent(inout)  ions_dyn,
type(ions_t), intent(inout)  ions,
type(partner_list_t), intent(in)  ext_partners,
type(multicomm_t), intent(inout)  mc 
)

Exponential midpoint with prediction of the half time step This is equivalent to an explicit Magnus integration of second order, see equation 20 in Casas, F. & Iserles, A. Explicit Magnus expansions for nonlinear equations. J. Phys. A: Math. Gen. 39, 5445 (2006) [https:

Parameters
[in,out]mcindex and domain communicators

Definition at line 202 of file propagator_expmid.F90.