![]() |
Octopus
|
Data Types | |
type | exponential_t |
Functions/Subroutines | |
subroutine, public | exponential_init (te, namespace, full_batch) |
subroutine, public | exponential_copy (teo, tei) |
subroutine | exponential_apply_single (te, namespace, mesh, hm, zpsi, ist, ik, deltat, vmagnus, imag_time) |
Wrapper to batchified routine for applying exponential to an array. More... | |
subroutine | exponential_apply_batch (te, namespace, mesh, hm, psib, deltat, psib2, deltat2, vmagnus, imag_time, inh_psib) |
This routine performs the operation: More... | |
subroutine | exponential_taylor_series_batch (te, namespace, mesh, hm, psib, deltat, psib2, deltat2, vmagnus, inh_psib, phik_shift) |
subroutine | exponential_lanczos_batch (te, namespace, mesh, hm, psib, deltat, vmagnus, inh_psib) |
subroutine, public | exponential_lanczos_function_batch (te, namespace, mesh, hm, psib, deltat, fun, vmagnus) |
Compute fun(H) psib, i.e. the application of a function of the Hamiltonian to a batch. More... | |
subroutine | exponential_cheby_batch (te, namespace, mesh, hm, psib, deltat, chebyshev_function, vmagnus) |
Calculates the exponential of the Hamiltonian through an expansion in Chebyshev polynomials. More... | |
subroutine | operate_batch (hm, namespace, mesh, psib, hpsib, vmagnus) |
subroutine, public | exponential_apply_all (te, namespace, gr, hm, st, deltat, order) |
Note that this routine not only computes the exponential, but also an extra term if there is a inhomogeneous term in the Hamiltonian hm. More... | |
subroutine | exponential_apply_phi_batch (te, namespace, mesh, hm, psib, deltat, k, vmagnus) |
Variables | |
integer, parameter, public | exp_lanczos = 2 |
integer, parameter, public | exp_taylor = 3 |
integer, parameter, public | exp_chebyshev = 4 |
subroutine, public exponential_oct_m::exponential_init | ( | type(exponential_t), intent(out) | te, |
type(namespace_t), intent(in) | namespace, | ||
logical, intent(in), optional | full_batch | ||
) |
Definition at line 179 of file exponential.F90.
subroutine, public exponential_oct_m::exponential_copy | ( | type(exponential_t), intent(inout) | teo, |
type(exponential_t), intent(in) | tei | ||
) |
Definition at line 321 of file exponential.F90.
|
private |
Wrapper to batchified routine for applying exponential to an array.
Definition at line 337 of file exponential.F90.
|
private |
This routine performs the operation:
\[ \exp{-i*\Delta t*hm(t)}|\psi> <-- |\psi> \]
If imag_time is present and is set to true, it performs instead:
\[ \exp{ \Delta t*hm(t)}|\psi> <-- |\psi> \]
If an inhomogeneous term is present, the operation is:
\[ \exp{-i*\Delta t*hm(t)}|\psi> + \Delta t*\phi_1{-i*\Delta t*hm(t)}|inh\psi> <-- |\psi> \]
where:
\[ \phi_1(x) = (e^x - 1)/x \]
[in,out] | inh_psib | inhomogeneous term |
Definition at line 402 of file exponential.F90.
|
private |
[in,out] | inh_psib | inhomogeneous term |
[in] | phik_shift | shift in the Taylor expansion coefficients for phi_k |
Definition at line 518 of file exponential.F90.
|
private |
[in] | inh_psib | inhomogeneous term |
Definition at line 603 of file exponential.F90.
subroutine, public exponential_oct_m::exponential_lanczos_function_batch | ( | type(exponential_t), intent(inout) | te, |
type(namespace_t), intent(in) | namespace, | ||
class(mesh_t), intent(in) | mesh, | ||
class(hamiltonian_abst_t), intent(inout) | hm, | ||
class(batch_t), intent(inout) | psib, | ||
complex(real64), intent(in) | deltat, | ||
fun, | |||
real(real64), dimension(:,:,:), intent(in), optional | vmagnus | ||
) |
Compute fun(H) psib, i.e. the application of a function of the Hamiltonian to a batch.
Usually, the function is an exponential, or a related function.
Some details of the implementation can be understood from Saad, Y. (1992). Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM Journal on Numerical Analysis, 29(1), 209-228.
A pdf can be accessed [here](https: or [via the DOI](https: Equation numbers below refer to this paper.
Definition at line 642 of file exponential.F90.
|
private |
Calculates the exponential of the Hamiltonian through an expansion in Chebyshev polynomials.
It uses the algorithm as outlined in [Hochbruck, M. & Ostermann, A.: Exponential Runge–Kutta methods for parabolic problems. Applied Numerical Mathematics 53, 323–339 (2005)](https: Section 4.1. See also [Kosloff, J. Phys. Chem. (1988), 92, 2087-2100](http: Section III.1 and [Kosloff, Annu. Rev. Phys. Chem. (1994), 45, 145–178](https: equations 7.1ff and especially figure 2 for the convergence properties of the coefficients.
Definition at line 803 of file exponential.F90.
|
private |
Definition at line 905 of file exponential.F90.
subroutine, public exponential_oct_m::exponential_apply_all | ( | type(exponential_t), intent(inout) | te, |
type(namespace_t), intent(in) | namespace, | ||
type(grid_t), intent(inout) | gr, | ||
type(hamiltonian_elec_t), intent(inout) | hm, | ||
type(states_elec_t), intent(inout) | st, | ||
real(real64), intent(in) | deltat, | ||
integer, intent(inout), optional | order | ||
) |
Note that this routine not only computes the exponential, but also an extra term if there is a inhomogeneous term in the Hamiltonian hm.
Definition at line 928 of file exponential.F90.
|
private |
Definition at line 1017 of file exponential.F90.
integer, parameter, public exponential_oct_m::exp_lanczos = 2 |
Definition at line 157 of file exponential.F90.
integer, parameter, public exponential_oct_m::exp_taylor = 3 |
Definition at line 157 of file exponential.F90.
integer, parameter, public exponential_oct_m::exp_chebyshev = 4 |
Definition at line 157 of file exponential.F90.