|
elemental logical function | math_oct_m::dis_close_scalar (x, y, rtol, atol) |
| Are \(x\) and \(y\) equal within a tolerance. More...
|
|
elemental logical function | math_oct_m::zis_close_scalar (x, y, rtol, atol) |
| Same as dis_close_scalar for complex numbers. More...
|
|
pure integer function, dimension(dim, dim) | math_oct_m::idiagonal_matrix (dim, diag) |
| Currently only returns a matrix whose diagonal elements are all the same. Note that the real and complex versions are in math_inc.F90. More...
|
|
recursive real(real64) function, public | math_oct_m::hermite (n, x) |
|
recursive integer function, public | math_oct_m::factorial (n) |
|
subroutine, public | math_oct_m::ylmr_cmplx (xx, li, mi, ylm) |
| Computes spherical harmonics ylm at position (x, y, z) More...
|
|
subroutine, public | math_oct_m::ylmr_real (xx, li, mi, ylm) |
| This is a Numerical Recipes-based subroutine computes real spherical harmonics ylm at position (x, y, z): ylm = c * plm( cos(theta) ) * sin(m*phi) for m < 0 ylm = c * plm( cos(theta) ) * cos(m*phi) for m >= 0 with (theta,phi) the polar angles of r, c a positive normalization. More...
|
|
subroutine, public | math_oct_m::weights (N, M, cc, side) |
| Compute the weights for finite-difference calculations: More...
|
|
real(real64) pure function, public | math_oct_m::ddelta (i, j) |
|
subroutine, public | math_oct_m::make_idx_set (n, out, length, in) |
| Construct out(1:length) = (/1, ..., n/) if in is not present, out(1:length) = in otherwise. More...
|
|
logical function, public | math_oct_m::member (n, a) |
| Considers a(1:ubound(a, 1)) as an integer set and checks if n is a member of it. More...
|
|
subroutine, public | math_oct_m::interpolation_coefficients (nn, xa, xx, cc) |
|
logical pure function, public | math_oct_m::even (n) |
| Returns if n is even. More...
|
|
logical pure function, public | math_oct_m::odd (n) |
| Returns if n is odd. More...
|
|
subroutine, public | math_oct_m::cartesian2hyperspherical (x, u) |
| Performs a transformation of an n-dimensional vector from Cartesian coordinates to hyperspherical coordinates. More...
|
|
subroutine, public | math_oct_m::hyperspherical2cartesian (u, x) |
| Performs the inverse transformation of cartesian2hyperspherical. More...
|
|
subroutine, public | math_oct_m::hypersphere_grad_matrix (grad_matrix, r, x) |
| Gives the hyperspherical gradient matrix, which contains the derivatives of the Cartesian coordinates with respect to the hyperspherical angles. More...
|
|
integer(int64) pure function | math_oct_m::pad88 (size, blk) |
|
integer(int64) pure function | math_oct_m::pad48 (size, blk) |
|
integer(int64) pure function | math_oct_m::pad8 (size, blk) |
|
integer pure function | math_oct_m::pad4 (size, blk) |
|
integer pure function, public | math_oct_m::pad_pow2 (size) |
| create array size, which is padded to powers of 2 More...
|
|
real(real64) pure function | math_oct_m::dlog2 (xx) |
|
integer pure function | math_oct_m::ilog2 (xx) |
|
integer(int64) pure function | math_oct_m::llog2 (xx) |
|
complex(real64) pure function, public | math_oct_m::exponential (z) |
| Wrapper for exponential. More...
|
|
complex(real64) pure function, public | math_oct_m::phi1 (z) |
| Compute phi1(z) = (exp(z)-1)/z. More...
|
|
complex(real64) pure function, public | math_oct_m::phi2 (z) |
| Compute phi2(z) = (phi1(z)-1)/z = (exp(z) - z - 1)/z^2. More...
|
|
real(real64) pure function, public | math_oct_m::square_root (x) |
| Wrapper for sqrt. More...
|
|
logical function, public | math_oct_m::is_prime (n) |
|
subroutine, public | math_oct_m::generate_rotation_matrix (R, ff, tt) |
| Generates a rotation matrix R to rotate a vector f to t. More...
|
|
subroutine, public | math_oct_m::numder_ridders (x, h, res, err, f) |
| Numerical derivative (Ridder`s algorithm). More...
|
|
pure complex(real64) function, dimension(1:3), public | math_oct_m::dzcross_product (a, b) |
|
pure complex(real64) function, dimension(1:3), public | math_oct_m::zdcross_product (a, b) |
|
subroutine, public | math_oct_m::generalized_laguerre_polynomial (np, nn, mm, xx, cx) |
|
subroutine | math_oct_m::dupper_triangular_to_hermitian (nn, aa) |
|
subroutine | math_oct_m::zupper_triangular_to_hermitian (nn, aa) |
|
subroutine | math_oct_m::dlower_triangular_to_hermitian (nn, aa) |
|
subroutine | math_oct_m::zlower_triangular_to_hermitian (nn, aa) |
|
subroutine, public | math_oct_m::dsymmetrize_matrix (nn, aa) |
|
subroutine, public | math_oct_m::dzero_small_elements_matrix (nn, aa, tol) |
|
pure complex(real64) function, dimension(dim, dim) | math_oct_m::zdiagonal_matrix (dim, diag) |
| Currently only returns a matrix whose diagonal elements are all the same. Note that the integer version is in math.F90. More...
|
|
subroutine | math_oct_m::zinterpolate_2 (xa, ya, x, y) |
|
subroutine | math_oct_m::zinterpolate_1 (xa, ya, x, y) |
|
subroutine | math_oct_m::zinterpolate_0 (xa, ya, x, y) |
|
pure complex(real64) function, dimension(1:3), public | math_oct_m::zcross_product (a, b) |
|
pure real(real64) function, dimension(dim, dim) | math_oct_m::ddiagonal_matrix (dim, diag) |
| Currently only returns a matrix whose diagonal elements are all the same. Note that the integer version is in math.F90. More...
|
|
subroutine | math_oct_m::dinterpolate_2 (xa, ya, x, y) |
|
subroutine | math_oct_m::dinterpolate_1 (xa, ya, x, y) |
|
subroutine | math_oct_m::dinterpolate_0 (xa, ya, x, y) |
|
pure real(real64) function, dimension(1:3), public | math_oct_m::dcross_product (a, b) |
|