Octopus
math_oct_m::is_close Interface Reference

Detailed Description

Definition at line 166 of file math.F90.

Private Member Functions

elemental logical function dis_close_scalar (x, y, rtol, atol)
 Are \(x\) and \(y\) equal within a tolerance. More...
 
elemental logical function zis_close_scalar (x, y, rtol, atol)
 Same as dis_close_scalar for complex numbers. More...
 

Member Function/Subroutine Documentation

◆ dis_close_scalar()

elemental logical function math_oct_m::is_close::dis_close_scalar ( real(real64), intent(in)  x,
real(real64), intent(in)  y,
real(real64), intent(in), optional  rtol,
real(real64), intent(in), optional  atol 
)
private

Are \(x\) and \(y\) equal within a tolerance.

The function evaluates the expression:

\[ |x - y| \leq (atol * rtol) * |y| \]

The tolerance values are positive, typically very small numbers. The relative difference \((rtol * |y|)\) and the absolute difference \( atol \) are added together to compare against the absolute difference between \(x\) and \(y\). Default tolerances are based on numpy''s [implementation](https:

Parameters
[in]xScalar.
[in]yScalar.
[in]rtolOptional, relative tolerance.
[in]atolOptional, absolute tolerance.
Returns
is_close .true. if \(x\) and \(y\) are close.

Definition at line 220 of file math.F90.

◆ zis_close_scalar()

elemental logical function math_oct_m::is_close::zis_close_scalar ( complex(real64), intent(in)  x,
complex(real64), intent(in)  y,
real(real64), intent(in), optional  rtol,
real(real64), intent(in), optional  atol 
)
private

Same as dis_close_scalar for complex numbers.

Definition at line 233 of file math.F90.


The documentation for this interface was generated from the following file: