| 
| interface   | lapack_oct_m::lapack_potrf | 
|   | computes the Cholesky factorization of a real symmetric positive definite matrix A.  More...
  | 
|   | 
| interface   | lapack_oct_m::lapack_sygv | 
|   | Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form \(Ax=(\lambda)Bx, ABx=(\lambda)x, \mbox{ or } BAx=(\lambda)x \). Here A and B are assumed to be symmetric and B is also positive definite.  More...
  | 
|   | 
| interface   | lapack_oct_m::lapack_hegv | 
|   | Computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form \(Ax=(\lambda)Bx, ABx=(\lambda)x, \mbox{ or } BAx=(\lambda)x \). Here A and B are assumed to be Hermitian and B is also positive definite.  More...
  | 
|   | 
| interface   | lapack_oct_m::dgeev | 
|   | Computes for an \( N \times N \) complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors.  More...
  | 
|   | 
| interface   | lapack_oct_m::zgeev | 
|   | 
| interface   | lapack_oct_m::lapack_gesvx | 
|   | 
| interface   | lapack_oct_m::lapack_syev | 
|   | Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A.  More...
  | 
|   | 
| interface   | lapack_oct_m::lapack_heev | 
|   | Computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A.  More...
  | 
|   | 
| interface   | lapack_oct_m::dsyevx | 
|   | 
| interface   | lapack_oct_m::zheevx | 
|   | 
| interface   | lapack_oct_m::lapack_geqrf | 
|   | Computes a QR factorization of a real \(m \times n\) matrix A:  More...
  | 
|   | 
| interface   | lapack_oct_m::lapack_orgqr | 
|   | Generates an \( M \times N \) real matrix Q with orthonormal columns, which is defined as the first N columns of a product of K elementary reflectors of order M.  More...
  | 
|   | 
| interface   | lapack_oct_m::lapack_sygvx | 
|   | Computes selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite eigenproblem, of the form \(Ax=(\lambda)Bx, ABx=(\lambda)x, \mbox{ or } BAx=(\lambda)x \). Here A and B are assumed to be symmetric and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.  More...
  | 
|   | 
| interface   | lapack_oct_m::lapack_hegvx | 
|   | Computes selected eigenvalues, and optionally, eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form \(Ax=(\lambda)Bx, ABx=(\lambda)x, \mbox{ or } BAx=(\lambda)x \). Here A and B are assumed to be Hermitian and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.  More...
  | 
|   | 
| interface   | lapack_oct_m::lapack_gelss | 
|   | 
| interface   | lapack_oct_m::lapack_getrf | 
|   | 
| interface   | lapack_oct_m::lapack_getri | 
|   | 
| interface   | lapack_oct_m::lapack_sytrf | 
|   | 
| interface   | lapack_oct_m::lapack_sytri | 
|   |