![]()  | 
  
    Octopus
    
   | 
 
This module contains interfaces for LAPACK routines. More...
This module contains interfaces for LAPACK routines.
Data Types | |
| interface | dgeev | 
| Computes for an \( N \times N \) complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors.  More... | |
| interface | dsyevx | 
| interface | lapack_gelss | 
| interface | lapack_geqrf | 
| Computes a QR factorization of a real \(m \times n\) matrix A:  More... | |
| interface | lapack_gesvx | 
| interface | lapack_getrf | 
| interface | lapack_getri | 
| interface | lapack_heev | 
| Computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A.  More... | |
| interface | lapack_hegv | 
| Computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form \(Ax=(\lambda)Bx, ABx=(\lambda)x, \mbox{ or } BAx=(\lambda)x \). Here A and B are assumed to be Hermitian and B is also positive definite.  More... | |
| interface | lapack_hegvx | 
| Computes selected eigenvalues, and optionally, eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form \(Ax=(\lambda)Bx, ABx=(\lambda)x, \mbox{ or } BAx=(\lambda)x \). Here A and B are assumed to be Hermitian and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.  More... | |
| interface | lapack_orgqr | 
| Generates an \( M \times N \) real matrix Q with orthonormal columns, which is defined as the first N columns of a product of K elementary reflectors of order M.  More... | |
| interface | lapack_potrf | 
| computes the Cholesky factorization of a real symmetric positive definite matrix A.  More... | |
| interface | lapack_syev | 
| Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A.  More... | |
| interface | lapack_sygv | 
| Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form \(Ax=(\lambda)Bx, ABx=(\lambda)x, \mbox{ or } BAx=(\lambda)x \). Here A and B are assumed to be symmetric and B is also positive definite.  More... | |
| interface | lapack_sygvx | 
| Computes selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite eigenproblem, of the form \(Ax=(\lambda)Bx, ABx=(\lambda)x, \mbox{ or } BAx=(\lambda)x \). Here A and B are assumed to be symmetric and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.  More... | |
| interface | lapack_sytrf | 
| interface | lapack_sytri | 
| interface | zgeev | 
| interface | zheevx |