KPointsGrid
KPointsGrid
Section Mesh::KPoints
Type block
Default -point only
When this block is given (and the KPoints block is not present),
k-points are distributed in a uniform grid, according to a modified
version of the Monkhorst-Pack scheme. For the original MP scheme, see
James D. Pack and Hendrik J. Monkhorst,
Phys. Rev. B 13, 5188 (1976) and Phys. Rev. B 16, 1748 (1977).
The number of columns should be equal to Dimensions, but the grid and shift numbers should be 1 and zero in finite directions.
The first row of the block is a set of integers defining the number of k-points to be used along each direction in reciprocal space. The numbers refer to the whole Brillouin zone, and the actual number of k-points is usually reduced exploiting the symmetries of the system. By default the grid will always include the $\Gamma$-point.
Optional rows can be added to specify multiple shifts in the k-points (between 0.0 and 1.0), in units of the Brillouin zone divided by the number in the first row. Please note that without specifying any shift, an implicit shift of -0.5 is added for odd number of k-points, such that the Gamma point is always included.
For example, the following input samples the BZ with 100 points in the xy-plane of reciprocal space:
%KPointsGrid
10 | 10 | 1
%
is equivalent to
%KPointsGrid
10 | 10 | 1
0 | 0 | -0.5
%
electrons/kpoints.F90 : 449
gamma_only_ = (parse_block(namespace, 'KPointsGrid', blk) /= 0)
- components/20-dft_u.03-complex_mesh.inp
- components/20-dft_u.04-complex_submesh.inp
- components/20-dft_u.07-complex_mesh_unpacked.inp
- components/20-dft_u.08-complex_submesh_unpacked.inp
- functionals/12-vdw_solid_c6.01-gs_diamond.inp
- functionals/12-vdw_solid_c6.02-gs_graphene.inp
- functionals/14-libvdwxc_Be_hcp.01-vdwdfcx.inp
- functionals/22-vdw_d3_stress.01-Be_hpc.inp
- lda_u/01-nio.01-U5-gs.inp
- lda_u/02-ACBN0.01-nio.inp
- lda_u/02-ACBN0.02-lif.inp
- lda_u/03-ACBN0_restricted.01-lif.inp
- lda_u/03-ACBN0_restricted.02-lif_unpacked.inp
- lda_u/07-noncollinear.01-U5-gs.inp
- lda_u/07-noncollinear.02-acbn0.inp
- lda_u/08-loewdin.01-Si.inp
- lda_u/08-loewdin.02-intersite.inp
- lda_u/08-loewdin.03-intersite_domains.inp
- lda_u/10-intersite.02-silicon.inp
- periodic_systems/04-silicon.01-gs.inp
- periodic_systems/04-silicon.02-kdotp.inp
- periodic_systems/04-silicon.03-emresp.inp
- periodic_systems/04-silicon.04-emresp_mo.inp
- periodic_systems/04-silicon.05-emresp_magn.inp
- periodic_systems/05-lithium.01-gs.inp
- periodic_systems/05-lithium.02-td.inp
- periodic_systems/05-lithium.03-td-restart.inp
- periodic_systems/05-lithium.04-dielectric_function.inp
- periodic_systems/05-lithium.05-tdtdm.inp
- periodic_systems/06-h2o_pol_lr.01_gs.inp
- periodic_systems/06-h2o_pol_lr.02_kdotp.inp
- periodic_systems/06-h2o_pol_lr.03_emresp.inp
- periodic_systems/06-h2o_pol_lr.04_emresp_mo.inp
- periodic_systems/06-h2o_pol_lr.05_emresp_susc.inp
- periodic_systems/07-mgga.01-tb09_gs_symm.inp
- periodic_systems/07-mgga.02-tb09_gs_nosymm.inp
- periodic_systems/07-mgga.03-tb09_td.inp
- periodic_systems/07-mgga.04-br89_gs.inp
- periodic_systems/07-mgga.05-br89_primitive.inp
- periodic_systems/10-berkeleygw.01-gs.inp
- periodic_systems/11-silicon_force.01-gs.inp
- periodic_systems/11-silicon_force.02-nlcc.inp
- periodic_systems/11-silicon_force.03-nosym.inp
- periodic_systems/12-boron_nitride.01-gs.inp
- periodic_systems/13-primitive.03-bcc_iron.inp
- periodic_systems/14-silicon_shifts.01-gs.inp
- periodic_systems/14-silicon_shifts.02-td.inp
- periodic_systems/14-silicon_shifts.03-td_parstates.inp
- periodic_systems/14-silicon_shifts.04-delayed_kick.inp
- periodic_systems/14-silicon_shifts.05-dielectric_function.inp
- periodic_systems/15-bandstructure.01-gs.inp
- periodic_systems/15-bandstructure.03-wannier90_setup.inp
- periodic_systems/15-bandstructure.04-wannier90_output.inp
- periodic_systems/15-bandstructure.05-wannier90_states.inp
- periodic_systems/16-sodium_chain_cylinder.01-ground_state.inp
- periodic_systems/16-sodium_chain_cylinder.02-unocc.inp
- periodic_systems/16-sodium_chain_cylinder.03-ground_state_disp.inp
- periodic_systems/16-sodium_chain_cylinder.04-unocc_disp.inp
- periodic_systems/17-aluminium.01-gs.inp
- periodic_systems/17-aluminium.02-td.inp
- periodic_systems/17-aluminium.03-conductivity.inp
- periodic_systems/18-TiO2.01-gs.inp
- periodic_systems/18-TiO2.02-gs_kerker.inp
- periodic_systems/19-unfolding.01-gs.inp
- periodic_systems/21-magnon.01-gs.inp
- periodic_systems/21-magnon.02-td.inp
- periodic_systems/21-magnon.03-susceptibility.inp
- periodic_systems/23-hybrids.01-ace.inp
- periodic_systems/23-hybrids.02-ace_accel.inp
- periodic_systems/23-hybrids.03-Si_pbe0.inp
- periodic_systems/23-hybrids.04-parstates.inp
- periodic_systems/24-hartree_fock_1D.01-gs.inp
- periodic_systems/25-Fe_polarized.01-gs.inp
- periodic_systems/25-Fe_polarized.02-setup.inp
- periodic_systems/26-Na.01-gs.inp
- periodic_systems/26-Na.02-kdotp.inp
- periodic_systems/27-Ar.01-gs.inp
- periodic_systems/27-Ar.02-kdotp.inp
- periodic_systems/27-Ar.03-em_resp_mo.inp
- periodic_systems/28-mgga_kli.01-Si_scan.inp
- periodic_systems/29-soc_solids.01-gs.inp
- periodic_systems/30-stress.03-par_kpoints.inp
- periodic_systems/30-stress.04-kpoint_sym.inp
- periodic_systems/31-magnon_1d.01-gs.inp
- periodic_systems/31-magnon_1d.02-td.inp
- periodic_systems/32-photodoping.01-gs.inp
- periodic_systems/33-go_shape.01-Si.inp
- periodic_systems/33-go_shape.02-Si_cell_only.inp
- periodic_systems/33-go_shape.03-Si_par_domains.inp
- periodic_systems/33-go_shape.04_monolayerBN.inp
- periodic_systems/34-zora.01-gs.inp
- photo_electron/13-arpes_2d.01-gs.inp
- photo_electron/13-arpes_2d.02-td.inp
- photo_electron/13-arpes_2d.03-restart.inp
- photo_electron/13-arpes_2d.04-spectrum.inp
- symmetries/01-triclinic.01-spg1.inp
- symmetries/01-triclinic.02-spg2.inp
- symmetries/02-monoclinic.01-spg3.inp
- symmetries/02-monoclinic.02-spg4.inp
- symmetries/02-monoclinic.03-spg5.inp
- symmetries/02-monoclinic.04-spg6.inp
- symmetries/02-monoclinic.05-spg7.inp
- symmetries/02-monoclinic.06-spg8.inp
- symmetries/02-monoclinic.07-spg9.inp
- symmetries/02-monoclinic.08-spg10.inp
- symmetries/02-monoclinic.09-spg11.inp
- symmetries/02-monoclinic.10-spg12.inp
- symmetries/02-monoclinic.11-spg13.inp
- symmetries/02-monoclinic.12-spg14.inp
- symmetries/02-monoclinic.13-spg15.inp
- symmetries/03-orthorombic.01-spg16.inp
- symmetries/03-orthorombic.02-spg17.inp
- symmetries/03-orthorombic.03-spg18.inp
- symmetries/03-orthorombic.04-spg19.inp
- symmetries/03-orthorombic.05-spg20.inp
- symmetries/03-orthorombic.06-spg21.inp
- symmetries/03-orthorombic.07-spg22.inp
- symmetries/03-orthorombic.08-spg23.inp
- symmetries/03-orthorombic.09-spg24.inp
- symmetries/03-orthorombic.10-spg25.inp
- symmetries/03-orthorombic.11-spg26.inp
- symmetries/03-orthorombic.12-spg27.inp
- symmetries/03-orthorombic.13-spg28.inp
- symmetries/03-orthorombic.14-spg29.inp
- symmetries/03-orthorombic.15-spg30.inp
- symmetries/03-orthorombic.16-spg31.inp
- symmetries/03-orthorombic.17-spg32.inp
- symmetries/03-orthorombic.18-spg33.inp
- symmetries/03-orthorombic.19-spg34.inp
- symmetries/03-orthorombic.20-spg35.inp
- symmetries/03-orthorombic.21-spg36.inp
- symmetries/03-orthorombic.22-spg37.inp
- symmetries/03-orthorombic.23-spg38.inp
- symmetries/03-orthorombic.24-spg39.inp
- symmetries/03-orthorombic.25-spg40.inp
- symmetries/03-orthorombic.26-spg41.inp
- symmetries/03-orthorombic.27-spg42.inp
- symmetries/03-orthorombic.28-spg43.inp
- symmetries/03-orthorombic.29-spg44.inp
- symmetries/03-orthorombic.30-spg45.inp
- symmetries/03-orthorombic.31-spg46.inp
- symmetries/03-orthorombic.32-spg47.inp
- symmetries/03-orthorombic.33-spg48.inp
- symmetries/03-orthorombic.34-spg49.inp
- symmetries/03-orthorombic.35-spg50.inp
- symmetries/03-orthorombic.36-spg51.inp
- symmetries/03-orthorombic.37-spg52.inp
- symmetries/03-orthorombic.38-spg53.inp
- symmetries/03-orthorombic.39-spg54.inp
- symmetries/03-orthorombic.40-spg55.inp
- symmetries/03-orthorombic.41-spg56.inp
- symmetries/03-orthorombic.42-spg57.inp
- symmetries/03-orthorombic.43-spg58.inp
- symmetries/03-orthorombic.44-spg59.inp
- symmetries/03-orthorombic.45-spg60.inp
- symmetries/03-orthorombic.46-spg61.inp
- symmetries/03-orthorombic.47-spg62.inp
- symmetries/03-orthorombic.48-spg63.inp
- symmetries/03-orthorombic.49-spg64.inp
- symmetries/03-orthorombic.50-spg65.inp
- symmetries/03-orthorombic.51-spg66.inp
- symmetries/03-orthorombic.52-spg67.inp
- symmetries/03-orthorombic.53-spg68.inp
- symmetries/03-orthorombic.54-spg69.inp
- symmetries/03-orthorombic.55-spg70.inp
- symmetries/03-orthorombic.56-spg71.inp
- symmetries/03-orthorombic.57-spg72.inp
- symmetries/03-orthorombic.58-spg73.inp
- symmetries/03-orthorombic.59-spg74.inp
- symmetries/04-tetragonal.01-spg75.inp
- symmetries/04-tetragonal.02-spg76.inp
- symmetries/04-tetragonal.03-spg77.inp
- symmetries/04-tetragonal.04-spg78.inp
- symmetries/04-tetragonal.05-spg79.inp
- symmetries/04-tetragonal.06-spg80.inp
- symmetries/04-tetragonal.07-spg81.inp
- symmetries/04-tetragonal.08-spg82.inp
- symmetries/04-tetragonal.09-spg83.inp
- symmetries/04-tetragonal.10-spg84.inp
- symmetries/04-tetragonal.11-spg85.inp
- symmetries/04-tetragonal.12-spg86.inp
- symmetries/04-tetragonal.13-spg87.inp
- symmetries/04-tetragonal.14-spg88.inp
- symmetries/04-tetragonal.15-spg89.inp
- symmetries/04-tetragonal.16-spg90.inp
- symmetries/04-tetragonal.17-spg91.inp
- symmetries/04-tetragonal.18-spg92.inp
- symmetries/04-tetragonal.19-spg93.inp
- symmetries/04-tetragonal.20-spg94.inp
- symmetries/04-tetragonal.21-spg95.inp
- symmetries/04-tetragonal.22-spg96.inp
- symmetries/04-tetragonal.23-spg97.inp
- symmetries/04-tetragonal.24-spg98.inp
- symmetries/04-tetragonal.25-spg99.inp
- symmetries/04-tetragonal.26-spg100.inp
- symmetries/04-tetragonal.27-spg101.inp
- symmetries/04-tetragonal.28-spg102.inp
- symmetries/04-tetragonal.29-spg103.inp
- symmetries/04-tetragonal.30-spg104.inp
- symmetries/04-tetragonal.31-spg105.inp
- symmetries/04-tetragonal.32-spg106.inp
- symmetries/04-tetragonal.33-spg107.inp
- symmetries/04-tetragonal.34-spg108.inp
- symmetries/04-tetragonal.35-spg109.inp
- symmetries/04-tetragonal.36-spg110.inp
- symmetries/04-tetragonal.37-spg111.inp
- symmetries/04-tetragonal.38-spg112.inp
- symmetries/04-tetragonal.39-spg113.inp
- symmetries/04-tetragonal.40-spg114.inp
- symmetries/04-tetragonal.41-spg115.inp
- symmetries/04-tetragonal.42-spg116.inp
- symmetries/04-tetragonal.43-spg117.inp
- symmetries/04-tetragonal.44-spg118.inp
- symmetries/04-tetragonal.45-spg119.inp
- symmetries/04-tetragonal.46-spg120.inp
- symmetries/04-tetragonal.47-spg121.inp
- symmetries/04-tetragonal.48-spg122.inp
- symmetries/04-tetragonal.49-spg123.inp
- symmetries/04-tetragonal.50-spg124.inp
- symmetries/04-tetragonal.51-spg125.inp
- symmetries/04-tetragonal.52-spg126.inp
- symmetries/04-tetragonal.53-spg127.inp
- symmetries/04-tetragonal.54-spg128.inp
- symmetries/04-tetragonal.55-spg129.inp
- symmetries/04-tetragonal.56-spg130.inp
- symmetries/04-tetragonal.57-spg131.inp
- symmetries/04-tetragonal.58-spg132.inp
- symmetries/04-tetragonal.59-spg133.inp
- symmetries/04-tetragonal.60-spg134.inp
- symmetries/04-tetragonal.61-spg135.inp
- symmetries/04-tetragonal.62-spg136.inp
- symmetries/04-tetragonal.63-spg137.inp
- symmetries/04-tetragonal.64-spg138.inp
- symmetries/04-tetragonal.65-spg139.inp
- symmetries/04-tetragonal.66-spg140.inp
- symmetries/04-tetragonal.67-spg141.inp
- symmetries/04-tetragonal.68-spg142.inp
- symmetries/05-hexagonal.01-spg143.inp
- symmetries/05-hexagonal.02-spg144.inp
- symmetries/05-hexagonal.03-spg145.inp
- symmetries/05-hexagonal.04-spg146.inp
- symmetries/05-hexagonal.05-spg147.inp
- symmetries/05-hexagonal.06-spg148.inp
- symmetries/05-hexagonal.07-spg149.inp
- symmetries/05-hexagonal.08-spg150.inp
- symmetries/05-hexagonal.09-spg151.inp
- symmetries/05-hexagonal.10-spg152.inp
- symmetries/05-hexagonal.11-spg153.inp
- symmetries/05-hexagonal.12-spg154.inp
- symmetries/05-hexagonal.13-spg155.inp
- symmetries/05-hexagonal.14-spg156.inp
- symmetries/05-hexagonal.15-spg157.inp
- symmetries/05-hexagonal.16-spg158.inp
- symmetries/05-hexagonal.17-spg159.inp
- symmetries/05-hexagonal.18-spg160.inp
- symmetries/05-hexagonal.19-spg161.inp
- symmetries/05-hexagonal.20-spg162.inp
- symmetries/05-hexagonal.21-spg163.inp
- symmetries/05-hexagonal.22-spg164.inp
- symmetries/05-hexagonal.23-spg165.inp
- symmetries/05-hexagonal.24-spg166.inp
- symmetries/05-hexagonal.25-spg167.inp
- symmetries/05-hexagonal.26-spg168.inp
- symmetries/05-hexagonal.27-spg169.inp
- symmetries/05-hexagonal.28-spg170.inp
- symmetries/05-hexagonal.29-spg171.inp
- symmetries/05-hexagonal.30-spg172.inp
- symmetries/05-hexagonal.31-spg173.inp
- symmetries/05-hexagonal.32-spg174.inp
- symmetries/05-hexagonal.33-spg175.inp
- symmetries/05-hexagonal.34-spg176.inp
- symmetries/05-hexagonal.35-spg177.inp
- symmetries/05-hexagonal.36-spg178.inp
- symmetries/05-hexagonal.37-spg179.inp
- symmetries/05-hexagonal.38-spg180.inp
- symmetries/05-hexagonal.39-spg181.inp
- symmetries/05-hexagonal.40-spg182.inp
- symmetries/05-hexagonal.41-spg183.inp
- symmetries/05-hexagonal.42-spg184.inp
- symmetries/05-hexagonal.43-spg185.inp
- symmetries/05-hexagonal.44-spg186.inp
- symmetries/05-hexagonal.45-spg187.inp
- symmetries/05-hexagonal.46-spg188.inp
- symmetries/05-hexagonal.47-spg189.inp
- symmetries/05-hexagonal.48-spg190.inp
- symmetries/05-hexagonal.49-spg191.inp
- symmetries/05-hexagonal.50-spg192.inp
- symmetries/05-hexagonal.51-spg193.inp
- symmetries/05-hexagonal.52-spg194.inp
- symmetries/06-cubic.01-spg195.inp
- symmetries/06-cubic.02-spg196.inp
- symmetries/06-cubic.03-spg197.inp
- symmetries/06-cubic.04-spg198.inp
- symmetries/06-cubic.05-spg199.inp
- symmetries/06-cubic.06-spg200.inp
- symmetries/06-cubic.07-spg201.inp
- symmetries/06-cubic.08-spg202.inp
- symmetries/06-cubic.09-spg203.inp
- symmetries/06-cubic.10-spg204.inp
- symmetries/06-cubic.11-spg205.inp
- symmetries/06-cubic.12-spg206.inp
- symmetries/06-cubic.13-spg207.inp
- symmetries/06-cubic.14-spg208.inp
- symmetries/06-cubic.15-spg209.inp
- symmetries/06-cubic.16-spg210.inp
- symmetries/06-cubic.17-spg211.inp
- symmetries/06-cubic.18-spg212.inp
- symmetries/06-cubic.19-spg213.inp
- symmetries/06-cubic.20-spg214.inp
- symmetries/06-cubic.21-spg215.inp
- symmetries/06-cubic.22-spg216.inp
- symmetries/06-cubic.23-spg217.inp
- symmetries/06-cubic.24-spg218.inp
- symmetries/06-cubic.25-spg219.inp
- symmetries/06-cubic.26-spg220.inp
- symmetries/06-cubic.27-spg221.inp
- symmetries/06-cubic.28-spg222.inp
- symmetries/06-cubic.29-spg223.inp
- symmetries/06-cubic.30-spg224.inp
- symmetries/06-cubic.31-spg225.inp
- symmetries/06-cubic.32-spg226.inp
- symmetries/06-cubic.33-spg227.inp
- symmetries/06-cubic.34-spg228.inp
- symmetries/06-cubic.35-spg229.inp
- symmetries/06-cubic.36-spg230.inp
- symmetries/07-symmetrization_lda.01-spg2_sym.inp
- symmetries/07-symmetrization_lda.02-spg16_sym.inp
- symmetries/07-symmetrization_lda.03-spg75_sym.inp
- symmetries/08-symmetrization_mgga.01-spg3_sym.inp
- symmetries/09-symmetrization_gga.01-spg143_nosym.inp
- symmetries/09-symmetrization_gga.02-spg143_sym.inp
- symmetries/10-Si_beta_Sn.inp
- tutorials/06-octopus_basics-periodic_systems.01-silicon.inp
- tutorials/06-octopus_basics-periodic_systems.02-silicon_converged.inp