|
class(perturbation_kdotp_t) function, pointer | perturbation_kdotp_constructor (namespace, ions) |
| The factory routine (or constructor) allocates a pointer of the corresponding type and then calls the init routine which is a type-bound procedure of the corresponding type. With this design, also derived classes can use the init routine of the parent class. More...
|
|
subroutine | perturbation_kdotp_init (this, namespace, ions) |
|
subroutine | perturbation_kdotp_finalize (this) |
|
subroutine | perturbation_kdotp_copy (this, source) |
|
subroutine | perturbation_kdotp_info (this) |
|
subroutine | dperturbation_kdotp_apply (this, namespace, space, gr, hm, ik, f_in, f_out, set_bc) |
| Returns f_out = H' f_in, where H' is perturbation Hamiltonian Note that e^ikr phase is applied to f_in, then is removed afterward. More...
|
|
subroutine | dperturbation_kdotp_apply_order_2 (this, namespace, space, gr, hm, ik, f_in, f_out) |
| d^2/dki dkj (-(1/2) ki kj [ri,[rj,H]]) = for i = j : 1 - [ri,[rj,Vnl]] for i != j : -(1/2) [ri,[rj,Vnl]] Ref: Eq. 3 from M Cardona and FH Pollak, Phys. Rev. 142, 530-543 (1966) Except everything is times minus one, since our kdotp perturbation is d/d(ik) More...
|
|
subroutine | zperturbation_kdotp_apply (this, namespace, space, gr, hm, ik, f_in, f_out, set_bc) |
| Returns f_out = H' f_in, where H' is perturbation Hamiltonian Note that e^ikr phase is applied to f_in, then is removed afterward. More...
|
|
subroutine | zperturbation_kdotp_apply_order_2 (this, namespace, space, gr, hm, ik, f_in, f_out) |
| d^2/dki dkj (-(1/2) ki kj [ri,[rj,H]]) = for i = j : 1 - [ri,[rj,Vnl]] for i != j : -(1/2) [ri,[rj,Vnl]] Ref: Eq. 3 from M Cardona and FH Pollak, Phys. Rev. 142, 530-543 (1966) Except everything is times minus one, since our kdotp perturbation is d/d(ik) More...
|
|
subroutine perturbation_kdotp_oct_m::dperturbation_kdotp_apply_order_2 |
( |
class(perturbation_kdotp_t), intent(in) |
this, |
|
|
type(namespace_t), intent(in) |
namespace, |
|
|
class(space_t), intent(in) |
space, |
|
|
type(grid_t), intent(in) |
gr, |
|
|
type(hamiltonian_elec_t), intent(in) |
hm, |
|
|
integer, intent(in) |
ik, |
|
|
real(real64), dimension(:, :), intent(in), contiguous |
f_in, |
|
|
real(real64), dimension(:, :), intent(out), contiguous |
f_out |
|
) |
| |
|
private |
d^2/dki dkj (-(1/2) ki kj [ri,[rj,H]]) = for i = j : 1 - [ri,[rj,Vnl]] for i != j : -(1/2) [ri,[rj,Vnl]] Ref: Eq. 3 from M Cardona and FH Pollak, Phys. Rev. 142, 530-543 (1966) Except everything is times minus one, since our kdotp perturbation is d/d(ik)
Definition at line 455 of file perturbation_kdotp.F90.
subroutine perturbation_kdotp_oct_m::zperturbation_kdotp_apply_order_2 |
( |
class(perturbation_kdotp_t), intent(in) |
this, |
|
|
type(namespace_t), intent(in) |
namespace, |
|
|
class(space_t), intent(in) |
space, |
|
|
type(grid_t), intent(in) |
gr, |
|
|
type(hamiltonian_elec_t), intent(in) |
hm, |
|
|
integer, intent(in) |
ik, |
|
|
complex(real64), dimension(:, :), intent(in), contiguous |
f_in, |
|
|
complex(real64), dimension(:, :), intent(out), contiguous |
f_out |
|
) |
| |
|
private |
d^2/dki dkj (-(1/2) ki kj [ri,[rj,H]]) = for i = j : 1 - [ri,[rj,Vnl]] for i != j : -(1/2) [ri,[rj,Vnl]] Ref: Eq. 3 from M Cardona and FH Pollak, Phys. Rev. 142, 530-543 (1966) Except everything is times minus one, since our kdotp perturbation is d/d(ik)
Definition at line 747 of file perturbation_kdotp.F90.