|
subroutine | chebyshev_set_parameters (this, half_span, middle_point, deltat) |
|
class(chebyshev_exp_t) function, pointer | chebyshev_exp_constructor (half_span, middle_point, deltat) |
|
subroutine | chebyshev_exp_coefficients (this, order, coefficients) |
|
real(real64) function | chebyshev_exp_error (this, order) |
| Use the error estimate from Lubich, C. From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis. (EMS Press, 2008), doi:10.4171/067, Theorems 2.1 to 2.4. More...
|
|
class(chebyshev_exp_imagtime_t) function, pointer | chebyshev_exp_imagtime_constructor (half_span, middle_point, deltat) |
|
subroutine | chebyshev_exp_imagtime_coefficients (this, order, coefficients) |
|
real(real64) function | chebyshev_exp_imagtime_error (this, order) |
| Use the error estimate from Hochbruck, M. & Ostermann, A. Exponential integrators. Acta Numerica 19, 209–286 (2010), Theorem 4.1 (page 265) and L. Bergamaschi and M. Vianello: Efficient computation of the exponential operator for large, sparse, symmetric matrices, Numer. Linear Algebra Appl. 7, 27–45 (2000), eq. 2.7. More...
|
|
class(chebyshev_numerical_t) function, pointer | chebyshev_numerical_constructor (half_span, middle_point, deltat, complex_function) |
|
subroutine | chebyshev_numerical_coefficients (this, order, coefficients) |
| use a discrete cosine transform to compute the coefficients because no analytical formula is available for the phi_k functions More...
|
|
real(real64) function | chebyshev_numerical_error (this, order) |
| use the error estimate from Lubich, C. From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis. (EMS Press, 2008), doi:10.4171/067, Theorems 2.1 to 2.4 More...
|
|
real(real64) function chebyshev_coefficients_oct_m::chebyshev_exp_imagtime_error |
( |
class(chebyshev_exp_imagtime_t), intent(in) |
this, |
|
|
integer, intent(in) |
order |
|
) |
| |
|
private |
Use the error estimate from Hochbruck, M. & Ostermann, A. Exponential integrators. Acta Numerica 19, 209–286 (2010), Theorem 4.1 (page 265) and L. Bergamaschi and M. Vianello: Efficient computation of the exponential operator for large, sparse, symmetric matrices, Numer. Linear Algebra Appl. 7, 27–45 (2000), eq. 2.7.
Definition at line 310 of file chebyshev_coefficients.F90.