Go to the source code of this file.
|
subroutine, public | mxll_elec_coupling_oct_m::mxll_coupling_init (this, d, gr, namespace, mass) |
| Parse variables and initialize Maxwell coupling. More...
|
|
subroutine | mxll_elec_coupling_oct_m::mxll_quadrupole_test_init (this, gr, namespace) |
| Initializes quadrupole test when requested. The test applies an electric field defined as E=(0.2 x, 0, 0) which produces a quadrupole potential that is harmonic: V=0.1 x^2. More...
|
|
subroutine, public | mxll_elec_coupling_oct_m::mxll_coupling_calc (this, hm_base, mesh, d, space) |
| Add the Maxwell coupling to the electronic Hamiltonian. More...
|
|
subroutine, public | mxll_elec_coupling_oct_m::mxll_coupling_end (this) |
| Finalize and deallocate Maxwell coupling arrays. More...
|
|
subroutine, public | mxll_elec_coupling_oct_m::set_electric_quadrupole_pot (this, mesh) |
| Computes the electric quadrupole potential \(H^{EQ} = \frac{1}{2} e [ (\vec{r} \cdot \mathbb{Q} \cdot \vec{r} )\phi \) where \( \mathbb{Q} _{i j}=\left.\partial_i E_j^{\perp}\right|_{\vec{r}=\vec{r}_0} \). More...
|
|
subroutine, public | mxll_elec_coupling_oct_m::magnetic_dipole_coupling (this, psib, hpsib) |
| Computes the magnetic dipole term of the Hamiltonian. \(H^{MD} = (-i e \hbar /2m) \sum_i (\vec{B}(r_0).(\vec{r} x \nabla)) \psi_i \) This routine acually implements the equivalent expression (\vec{B}(r_0) \times \vec{r}) . (\nabla \psi) More...
|
|
|
integer, parameter, public | mxll_elec_coupling_oct_m::no_maxwell_coupling = 0 |
|
integer, parameter, public | mxll_elec_coupling_oct_m::length_gauge_dipole = 1 |
|
integer, parameter, public | mxll_elec_coupling_oct_m::multipolar_expansion = 2 |
|
integer, parameter, public | mxll_elec_coupling_oct_m::velocity_gauge_dipole = 3 |
|
integer, parameter, public | mxll_elec_coupling_oct_m::full_minimal_coupling = 4 |
|
integer, parameter, public | mxll_elec_coupling_oct_m::dipole_average = 0 |
|
integer, parameter, public | mxll_elec_coupling_oct_m::dipole_at_com = 1 |
|