Octopus
lalg_basic.F90 File Reference

Go to the source code of this file.

Modules

module  lalg_basic_oct_m
 

Data Types

interface  lalg_basic_oct_m::lalg_swap
 swap two vectors More...
 
interface  lalg_basic_oct_m::lalg_scal
 scales a vector by a constant More...
 
interface  lalg_basic_oct_m::lalg_axpy
 constant times a vector plus a vector More...
 
interface  lalg_basic_oct_m::lalg_copy
 Copies a vector x, to a vector y. More...
 
interface  lalg_basic_oct_m::lalg_nrm2
 Returns the euclidean norm of a vector. More...
 
interface  lalg_basic_oct_m::lalg_symv
 Matrix-vector multiplication plus vector. More...
 
interface  lalg_basic_oct_m::lalg_gemv
 
interface  lalg_basic_oct_m::lalg_gemm
 Matrix-matrix multiplication plus matrix. More...
 
interface  lalg_basic_oct_m::lalg_gemm_cn
 The same as above but with (Hermitian) transpose of A. More...
 
interface  lalg_basic_oct_m::lalg_gemm_nc
 The same as lalg_gemm but with (Hermitian) transpose of B. More...
 
interface  lalg_basic_oct_m::lalg_symm
 The following matrix multiplications all expect upper triangular matrices for a. For real matrices, \(A = A^T\), for complex matrices \(A = A^H\). More...
 
interface  lalg_basic_oct_m::lalg_trmm
 Matrix-matrix multiplication. More...
 

Functions/Subroutines

subroutine lalg_basic_oct_m::swap_1_2 (n1, dx, dy)
 
subroutine lalg_basic_oct_m::swap_2_2 (n1, n2, dx, dy)
 
subroutine lalg_basic_oct_m::swap_3_2 (n1, n2, n3, dx, dy)
 
subroutine lalg_basic_oct_m::swap_4_2 (n1, n2, n3, n4, dx, dy)
 
subroutine lalg_basic_oct_m::scal_1_2 (n1, da, dx)
 
subroutine lalg_basic_oct_m::scal_2_2 (n1, n2, da, dx)
 
subroutine lalg_basic_oct_m::scal_3_2 (n1, n2, n3, da, dx)
 
subroutine lalg_basic_oct_m::scal_4_2 (n1, n2, n3, n4, da, dx)
 
subroutine lalg_basic_oct_m::axpy_1_2 (n1, da, dx, dy)
 
subroutine lalg_basic_oct_m::axpy_2_2 (n1, n2, da, dx, dy)
 
subroutine lalg_basic_oct_m::axpy_3_2 (n1, n2, n3, da, dx, dy)
 
subroutine lalg_basic_oct_m::axpy_4_2 (n1, n2, n3, n4, da, dx, dy)
 
subroutine lalg_basic_oct_m::copy_1_2 (n1, dx, dy)
 
subroutine lalg_basic_oct_m::copy_2_2 (n1, n2, dx, dy)
 
subroutine lalg_basic_oct_m::copy_3_2 (n1, n2, n3, dx, dy)
 
subroutine lalg_basic_oct_m::copy_4_2 (n1, n2, n3, n4, dx, dy)
 
real(real64) function lalg_basic_oct_m::nrm2_2 (n, dx)
 
subroutine lalg_basic_oct_m::symv_1_2 (n, alpha, a, x, beta, y)
 
subroutine lalg_basic_oct_m::symv_2_2 (n1, n2, alpha, a, x, beta, y)
 
subroutine lalg_basic_oct_m::gemv_1_2 (m, n, alpha, a, x, beta, y)
 
subroutine lalg_basic_oct_m::gemv_2_2 (m1, m2, n, alpha, a, x, beta, y)
 
subroutine lalg_basic_oct_m::gemm_1_2 (m, n, k, alpha, a, b, beta, c)
 
subroutine lalg_basic_oct_m::gemm_2_2 (m1, m2, n, k, alpha, a, b, beta, c)
 
subroutine lalg_basic_oct_m::gemm_cn_1_2 (m, n, k, alpha, a, b, beta, c)
 The same as above but with (Hermitian) transpose of a. More...
 
subroutine lalg_basic_oct_m::gemm_cn_2_2 (m1, m2, n1, n2, k, alpha, a, b, beta, c)
 
subroutine lalg_basic_oct_m::gemm_nc_1_2 (m, n, k, alpha, a, b, beta, c)
 The same as gemm but with (Hermitian) transpose of b. More...
 
subroutine lalg_basic_oct_m::gemm_nc_2_2 (m1, m2, n1, n2, k, alpha, a, b, beta, c)
 
subroutine lalg_basic_oct_m::symm_1_2 (m, n, side, alpha, a, b, beta, c)
 The following matrix multiplications all expect upper triangular matrices for a. For real matrices, a = a^T, for complex matrices a = a^H. More...
 
subroutine lalg_basic_oct_m::trmm_1_2 (m, n, uplo, transa, side, alpha, a, b)
 
subroutine lalg_basic_oct_m::swap_1_4 (n1, dx, dy)
 
subroutine lalg_basic_oct_m::swap_2_4 (n1, n2, dx, dy)
 
subroutine lalg_basic_oct_m::swap_3_4 (n1, n2, n3, dx, dy)
 
subroutine lalg_basic_oct_m::swap_4_4 (n1, n2, n3, n4, dx, dy)
 
subroutine lalg_basic_oct_m::scal_1_4 (n1, da, dx)
 
subroutine lalg_basic_oct_m::scal_2_4 (n1, n2, da, dx)
 
subroutine lalg_basic_oct_m::scal_3_4 (n1, n2, n3, da, dx)
 
subroutine lalg_basic_oct_m::scal_4_4 (n1, n2, n3, n4, da, dx)
 
subroutine lalg_basic_oct_m::scal_5_4 (n1, da, dx)
 
subroutine lalg_basic_oct_m::scal_6_4 (n1, n2, da, dx)
 
subroutine lalg_basic_oct_m::axpy_1_4 (n1, da, dx, dy)
 
subroutine lalg_basic_oct_m::axpy_2_4 (n1, n2, da, dx, dy)
 
subroutine lalg_basic_oct_m::axpy_3_4 (n1, n2, n3, da, dx, dy)
 
subroutine lalg_basic_oct_m::axpy_4_4 (n1, n2, n3, n4, da, dx, dy)
 
subroutine lalg_basic_oct_m::axpy_5_4 (n1, da, dx, dy)
 
subroutine lalg_basic_oct_m::axpy_6_4 (n1, n2, da, dx, dy)
 
subroutine lalg_basic_oct_m::axpy_7_4 (n1, n2, n3, da, dx, dy)
 
subroutine lalg_basic_oct_m::copy_1_4 (n1, dx, dy)
 
subroutine lalg_basic_oct_m::copy_2_4 (n1, n2, dx, dy)
 
subroutine lalg_basic_oct_m::copy_3_4 (n1, n2, n3, dx, dy)
 
subroutine lalg_basic_oct_m::copy_4_4 (n1, n2, n3, n4, dx, dy)
 
real(real64) function lalg_basic_oct_m::nrm2_4 (n, dx)
 
subroutine lalg_basic_oct_m::symv_1_4 (n, alpha, a, x, beta, y)
 
subroutine lalg_basic_oct_m::symv_2_4 (n1, n2, alpha, a, x, beta, y)
 
subroutine lalg_basic_oct_m::gemv_1_4 (m, n, alpha, a, x, beta, y)
 
subroutine lalg_basic_oct_m::gemv_2_4 (m1, m2, n, alpha, a, x, beta, y)
 
subroutine lalg_basic_oct_m::gemm_1_4 (m, n, k, alpha, a, b, beta, c)
 
subroutine lalg_basic_oct_m::gemm_2_4 (m1, m2, n, k, alpha, a, b, beta, c)
 
subroutine lalg_basic_oct_m::gemm_cn_1_4 (m, n, k, alpha, a, b, beta, c)
 The same as above but with (Hermitian) transpose of a. More...
 
subroutine lalg_basic_oct_m::gemm_cn_2_4 (m1, m2, n1, n2, k, alpha, a, b, beta, c)
 
subroutine lalg_basic_oct_m::gemm_nc_1_4 (m, n, k, alpha, a, b, beta, c)
 The same as gemm but with (Hermitian) transpose of b. More...
 
subroutine lalg_basic_oct_m::gemm_nc_2_4 (m1, m2, n1, n2, k, alpha, a, b, beta, c)
 
subroutine lalg_basic_oct_m::symm_1_4 (m, n, side, alpha, a, b, beta, c)
 The following matrix multiplications all expect upper triangular matrices for a. For real matrices, a = a^T, for complex matrices a = a^H. More...
 
subroutine lalg_basic_oct_m::trmm_1_4 (m, n, uplo, transa, side, alpha, a, b)