Octopus
lalg_adv_oct_m::lalg_matrix_rank_svd Interface Reference

Detailed Description

Definition at line 238 of file lalg_adv.F90.

Private Member Functions

integer function dmatrix_rank_svd (a, preserve_mat, tol)
 Compute the rank of the matrix A using SVD. More...
 
integer function zmatrix_rank_svd (a, preserve_mat, tol)
 Compute the rank of the matrix A using SVD. More...
 

Member Function/Subroutine Documentation

◆ dmatrix_rank_svd()

integer function lalg_adv_oct_m::lalg_matrix_rank_svd::dmatrix_rank_svd ( real(real64), dimension(:, :), intent(inout)  a,
logical, intent(in), optional  preserve_mat,
real(real64), intent(in), optional  tol 
)
private

Compute the rank of the matrix A using SVD.

The rank is equal to the number of non-zero singular values in the diagonal matrix of the SVD decomposition.

Parameters
[in,out]aInput: (m, n)
[in]preserve_matPreserve input A
[in]tolTolerance defining
Returns
Rank of matrix A

Definition at line 3417 of file lalg_adv.F90.

◆ zmatrix_rank_svd()

integer function lalg_adv_oct_m::lalg_matrix_rank_svd::zmatrix_rank_svd ( complex(real64), dimension(:, :), intent(inout)  a,
logical, intent(in), optional  preserve_mat,
real(real64), intent(in), optional  tol 
)
private

Compute the rank of the matrix A using SVD.

The rank is equal to the number of non-zero singular values in the diagonal matrix of the SVD decomposition.

Parameters
[in,out]aInput: (m, n)
[in]preserve_matPreserve input A
[in]tolTolerance defining
Returns
Rank of matrix A

Definition at line 1916 of file lalg_adv.F90.


The documentation for this interface was generated from the following file: