Octopus
|
Definition at line 228 of file lalg_adv.F90.
Private Member Functions | |
subroutine | dlalg_matrix_function (n, factor, a, fun_a, fun, hermitian) |
This routine calculates a function of a matrix by using an eigenvalue decomposition. More... | |
subroutine | zlalg_matrix_function (n, factor, a, fun_a, fun, hermitian) |
This routine calculates a function of a matrix by using an eigenvalue decomposition. More... | |
|
private |
This routine calculates a function of a matrix by using an eigenvalue decomposition.
For the hermitian case:
\[ A = V D V^T \implies fun(A) = V fun(D) V^T \]
and in general
\[ A = V D V^-1 \implies fun(A) = V fun(D) V^-1 \]
where \(V\) are the eigenvectors, and \(D\) is a diagonal matrix containing the eigenvalues.
In addition, this function can compute \(fun(factor*A)\) for a complex factor.
This is slow but it is simple to implement, and for the moment it does not affect performance.
[in] | n | dimension of the matrix A |
[in] | factor | complex factor |
[in] | a | matrix A |
[in,out] | fun_a | fun(A) |
[in] | hermitian | is the matrix hermitian? |
Definition at line 3515 of file lalg_adv.F90.
|
private |
This routine calculates a function of a matrix by using an eigenvalue decomposition.
For the hermitian case:
\[ A = V D V^T \implies fun(A) = V fun(D) V^T \]
and in general
\[ A = V D V^-1 \implies fun(A) = V fun(D) V^-1 \]
where \(V\) are the eigenvectors, and \(D\) is a diagonal matrix containing the eigenvalues.
In addition, this function can compute \(fun(factor*A)\) for a complex factor.
This is slow but it is simple to implement, and for the moment it does not affect performance.
[in] | n | dimension of the matrix A |
[in] | factor | complex factor |
[in] | a | matrix A |
[in,out] | fun_a | fun(A) |
[in] | hermitian | is the matrix hermitian? |
Definition at line 2088 of file lalg_adv.F90.