38 use,
intrinsic :: iso_fortran_env
103 logical :: calculating
104 logical :: time_present
106 real(real64),
allocatable :: density(:, :)
107 logical :: total_density_alloc
108 real(real64),
pointer,
contiguous :: total_density(:)
109 type(energy_t),
allocatable :: energy
111 type(states_elec_t),
pointer :: hf_st
116 real(real64),
allocatable :: vxc(:, :)
117 real(real64),
allocatable :: vtau(:, :)
118 real(real64),
allocatable :: axc(:, :, :)
119 real(real64),
allocatable :: a_ind(:, :)
120 real(real64),
allocatable :: b_ind(:, :)
121 logical :: calc_energy
126 integer,
public :: theory_level = -1
128 logical,
public :: frozen_hxc = .false.
130 integer,
public :: xc_family = 0
131 integer,
public :: xc_flags = 0
132 integer,
public :: xc_photon = 0
133 type(xc_t),
public :: xc
134 type(xc_photons_t),
public :: xc_photons
135 type(xc_oep_t),
public :: oep
136 type(xc_oep_photon_t),
public :: oep_photon
137 type(xc_ks_inversion_t),
public :: ks_inversion
138 type(xc_sic_t),
public :: sic
139 type(xc_vdw_t),
public :: vdw
140 type(grid_t),
pointer,
public :: gr
141 type(v_ks_calc_t) :: calc
142 logical :: calculate_current = .false.
143 type(current_t) :: current_calculator
144 logical :: include_td_field = .false.
145 logical,
public :: has_photons = .false.
146 logical :: xc_photon_include_hartree = .
true.
148 real(real64),
public :: stress_xc_gga(3, 3)
149 type(photon_mode_t),
pointer,
public :: pt => null()
150 type(mf_t),
public :: pt_mx
156 subroutine v_ks_init(ks, namespace, gr, st, ions, mc, space, kpoints)
157 type(v_ks_t),
intent(inout) :: ks
158 type(namespace_t),
intent(in) :: namespace
159 type(grid_t),
target,
intent(inout) :: gr
160 type(states_elec_t),
intent(in) :: st
161 type(ions_t),
intent(inout) :: ions
162 type(multicomm_t),
intent(in) :: mc
163 class(space_t),
intent(in) :: space
164 type(kpoints_t),
intent(in) :: kpoints
166 integer :: x_id, c_id, xk_id, ck_id, default, val
167 logical :: parsed_theory_level, using_hartree_fock
168 integer :: pseudo_x_functional, pseudo_c_functional
211 ks%xc_family = xc_family_none
217 parsed_theory_level = .false.
238 call messages_write(
'Info: the XCFunctional has been selected to match the pseudopotentials', new_line = .
true.)
253 call messages_write(
'The XCFunctional that you selected does not match the one used', new_line = .
true.)
302 call parse_variable(namespace,
'XCPhotonFunctional', option__xcphotonfunctional__none, ks%xc_photon)
312 call parse_variable(namespace,
'XCPhotonIncludeHartree', .
true., ks%xc_photon_include_hartree)
314 if (.not. ks%xc_photon_include_hartree)
then
325 using_hartree_fock = (ks%theory_level ==
hartree_fock) &
327 call xc_init(ks%xc, namespace, space%dim, space%periodic_dim, st%qtot, &
328 x_id, c_id, xk_id, ck_id,
hartree_fock = using_hartree_fock, ispin=st%d%ispin)
330 ks%xc_family = ks%xc%family
331 ks%xc_flags = ks%xc%flags
333 if (.not. parsed_theory_level)
then
342 call parse_variable(namespace,
'TheoryLevel', default, ks%theory_level)
354 ks%xc_family = ior(ks%xc_family, xc_family_oep)
364 ks%sic%amaldi_factor =
m_one
366 select case (ks%theory_level)
371 if (space%periodic_dim == space%dim)
then
374 if (kpoints%full%npoints > 1)
then
379 if (kpoints%full%npoints > 1)
then
394 if (
bitand(ks%xc_family, xc_family_lda + xc_family_gga) /= 0)
then
395 call xc_sic_init(ks%sic, namespace, gr, st, mc, space)
398 if (
bitand(ks%xc_family, xc_family_oep) /= 0)
then
399 select case (ks%xc%functional(
func_x,1)%id)
401 if (kpoints%reduced%npoints > 1)
then
406 if (kpoints%reduced%npoints > 1)
then
411 if((.not. ks%has_photons) .or. (ks%xc_photon /= 0))
then
412 if(oep_type == -1)
then
415 call xc_oep_init(ks%oep, namespace, gr, st, mc, space, oep_type)
429 message(1) =
"SICCorrection can only be used with Kohn-Sham DFT"
433 if (st%d%ispin ==
spinors)
then
434 if (
bitand(ks%xc_family, xc_family_mgga + xc_family_hyb_mgga) /= 0)
then
439 ks%frozen_hxc = .false.
444 ks%calc%calculating = .false.
449 call ks%vdw%init(namespace, space, gr, ks%xc, ions, x_id, c_id)
451 if (ks%xc_photon /= 0)
then
453 call ks%xc_photons%init(namespace, ks%xc_photon , space, gr, st)
465 integer,
intent(out) :: x_functional
466 integer,
intent(out) :: c_functional
468 integer :: xf, cf, ispecies
469 logical :: warned_inconsistent
474 warned_inconsistent = .false.
475 do ispecies = 1, ions%nspecies
476 select type(spec=>ions%species(ispecies)%s)
478 xf = spec%x_functional()
479 cf = spec%c_functional()
482 call messages_write(
"Unknown XC functional for species '"//trim(ions%species(ispecies)%s%get_label())//
"'")
490 if (xf /= x_functional .and. .not. warned_inconsistent)
then
491 call messages_write(
'Inconsistent XC functional detected between species')
493 warned_inconsistent = .
true.
500 if (cf /= c_functional .and. .not. warned_inconsistent)
then
501 call messages_write(
'Inconsistent XC functional detected between species')
503 warned_inconsistent = .
true.
523 type(
v_ks_t),
intent(inout) :: ks
529 select case (ks%theory_level)
534 if (
bitand(ks%xc_family, xc_family_oep) /= 0)
then
544 if (ks%xc_photon /= 0)
then
545 call ks%xc_photons%end()
555 type(
v_ks_t),
intent(in) :: ks
556 integer,
optional,
intent(in) :: iunit
564 select case (ks%theory_level)
589 subroutine v_ks_h_setup(namespace, space, gr, ions, ext_partners, st, ks, hm, calc_eigenval, calc_current)
592 type(
grid_t),
intent(in) :: gr
593 type(
ions_t),
intent(in) :: ions
596 type(
v_ks_t),
intent(inout) :: ks
598 logical,
optional,
intent(in) :: calc_eigenval
599 logical,
optional,
intent(in) :: calc_current
601 integer,
allocatable :: ind(:)
603 real(real64),
allocatable :: copy_occ(:)
604 logical :: calc_eigenval_
605 logical :: calc_current_
613 call v_ks_calc(ks, namespace, space, hm, st, ions, ext_partners, calc_eigenval = calc_eigenval_, calc_current = calc_current_)
615 if (st%restart_reorder_occs .and. .not. st%fromScratch)
then
616 message(1) =
"Reordering occupations for restart."
619 safe_allocate(ind(1:st%nst))
620 safe_allocate(copy_occ(1:st%nst))
623 call sort(st%eigenval(:, ik), ind)
624 copy_occ(1:st%nst) = st%occ(1:st%nst, ik)
626 st%occ(ist, ik) = copy_occ(ind(ist))
630 safe_deallocate_a(ind)
631 safe_deallocate_a(copy_occ)
641 subroutine v_ks_calc(ks, namespace, space, hm, st, ions, ext_partners, &
642 calc_eigenval, time, calc_energy, calc_current, force_semilocal)
643 type(
v_ks_t),
intent(inout) :: ks
648 type(
ions_t),
intent(in) :: ions
650 logical,
optional,
intent(in) :: calc_eigenval
651 real(real64),
optional,
intent(in) :: time
652 logical,
optional,
intent(in) :: calc_energy
653 logical,
optional,
intent(in) :: calc_current
654 logical,
optional,
intent(in) :: force_semilocal
656 logical :: calc_current_
662 call v_ks_calc_start(ks, namespace, space, hm, st, ions, hm%kpoints%latt, ext_partners, time, &
663 calc_energy, calc_current_, force_semilocal=force_semilocal)
665 ext_partners, force_semilocal=force_semilocal)
676 call lalg_axpy(ks%gr%np, st%d%nspin,
m_one, hm%magnetic_constrain%pot, hm%ks_pot%vhxc)
688 subroutine v_ks_calc_start(ks, namespace, space, hm, st, ions, latt, ext_partners, time, &
689 calc_energy, calc_current, force_semilocal)
690 type(
v_ks_t),
target,
intent(inout) :: ks
692 class(
space_t),
intent(in) :: space
695 type(
ions_t),
intent(in) :: ions
698 real(real64),
optional,
intent(in) :: time
699 logical,
optional,
intent(in) :: calc_energy
700 logical,
optional,
intent(in) :: calc_current
701 logical,
optional,
intent(in) :: force_semilocal
703 logical :: calc_current_
708 .and. ks%calculate_current &
714 assert(.not. ks%calc%calculating)
715 ks%calc%calculating = .
true.
717 write(
message(1),
'(a)')
'Debug: Calculating Kohn-Sham potential.'
720 ks%calc%time_present =
present(time)
726 if (ks%frozen_hxc)
then
727 if (calc_current_)
then
737 allocate(ks%calc%energy)
741 ks%calc%energy%intnvxc =
m_zero
743 nullify(ks%calc%total_density)
753 if (ks%theory_level /=
hartree .and. ks%theory_level /=
rdmft)
call v_a_xc(hm, force_semilocal)
755 ks%calc%total_density_alloc = .false.
758 if (calc_current_)
then
767 nullify(ks%calc%hf_st)
772 if (st%parallel_in_states)
then
774 call messages_write(
'State parallelization of Hartree-Fock exchange is not supported')
776 call messages_write(
'when running with OpenCL/CUDA. Please use domain parallelization')
778 call messages_write(
"or disable acceleration using 'DisableAccel = yes'.")
783 if (hm%exxop%useACE)
then
786 safe_allocate(ks%calc%hf_st)
796 if (hm%self_induced_magnetic)
then
797 safe_allocate(ks%calc%a_ind(1:ks%gr%np_part, 1:space%dim))
798 safe_allocate(ks%calc%b_ind(1:ks%gr%np_part, 1:space%dim))
799 call magnetic_induced(namespace, ks%gr, st, hm%psolver, hm%kpoints, ks%calc%a_ind, ks%calc%b_ind)
802 if ((ks%has_photons) .and. (ks%calc%time_present) .and. (ks%xc_photon == 0) )
then
803 call mf_calc(ks%pt_mx, ks%gr, st, ions, ks%pt, time)
821 safe_allocate(ks%calc%density(1:ks%gr%np, 1:st%d%nspin))
826 call lalg_scal(ks%gr%np, st%d%nspin, ks%sic%amaldi_factor, ks%calc%density)
829 nullify(ks%calc%total_density)
830 if (
allocated(st%rho_core) .or. hm%d%spin_channels > 1)
then
831 ks%calc%total_density_alloc = .
true.
833 safe_allocate(ks%calc%total_density(1:ks%gr%np))
836 ks%calc%total_density(ip) = sum(ks%calc%density(ip, 1:hm%d%spin_channels))
840 if (
allocated(st%rho_core))
then
841 call lalg_axpy(ks%gr%np, -ks%sic%amaldi_factor, st%rho_core, ks%calc%total_density)
844 ks%calc%total_density_alloc = .false.
845 ks%calc%total_density => ks%calc%density(:, 1)
852 subroutine v_a_xc(hm, force_semilocal)
854 logical,
optional,
intent(in) :: force_semilocal
861 ks%calc%energy%exchange =
m_zero
862 ks%calc%energy%correlation =
m_zero
863 ks%calc%energy%xc_j =
m_zero
864 ks%calc%energy%vdw =
m_zero
866 allocate(ks%calc%vxc(1:ks%gr%np, 1:st%d%nspin))
870 safe_allocate(ks%calc%vtau(1:ks%gr%np, 1:st%d%nspin))
875 if (ks%calc%calc_energy)
then
877 call xc_get_vxc(ks%gr, ks%xc, st, hm%kpoints, hm%psolver, namespace, space, ks%calc%density, st%d%ispin, &
878 latt%rcell_volume, ks%calc%vxc, ex = ks%calc%energy%exchange, ec = ks%calc%energy%correlation, &
879 deltaxc = ks%calc%energy%delta_xc, vtau = ks%calc%vtau, force_orbitalfree=force_semilocal)
881 call xc_get_vxc(ks%gr, ks%xc, st, hm%kpoints, hm%psolver, namespace, space, ks%calc%density, st%d%ispin, &
882 latt%rcell_volume, ks%calc%vxc, ex = ks%calc%energy%exchange, ec = ks%calc%energy%correlation, &
883 deltaxc = ks%calc%energy%delta_xc, stress_xc=ks%stress_xc_gga, force_orbitalfree=force_semilocal)
887 call xc_get_vxc(ks%gr, ks%xc, st, hm%kpoints, hm%psolver, namespace, space, ks%calc%density, &
888 st%d%ispin, latt%rcell_volume, ks%calc%vxc, vtau = ks%calc%vtau, force_orbitalfree=force_semilocal)
890 call xc_get_vxc(ks%gr, ks%xc, st, hm%kpoints, hm%psolver, namespace, space, ks%calc%density, &
891 st%d%ispin, latt%rcell_volume, ks%calc%vxc, stress_xc=ks%stress_xc_gga, force_orbitalfree=force_semilocal)
897 if (st%d%ispin /=
spinors)
then
898 message(1) =
"Noncollinear functionals can only be used with spinor wavefunctions."
903 message(1) =
"Cannot perform LCAO for noncollinear MGGAs."
904 message(2) =
"Please perform a LDA calculation first."
908 if (ks%calc%calc_energy)
then
910 call xc_get_nc_vxc(ks%gr, ks%xc, st, hm%kpoints, space, namespace, ks%calc%density, ks%calc%vxc, &
911 vtau = ks%calc%vtau, ex = ks%calc%energy%exchange, ec = ks%calc%energy%correlation)
913 call xc_get_nc_vxc(ks%gr, ks%xc, st, hm%kpoints, space, namespace, ks%calc%density, ks%calc%vxc, &
914 ex = ks%calc%energy%exchange, ec = ks%calc%energy%correlation)
918 call xc_get_nc_vxc(ks%gr, ks%xc, st, hm%kpoints, space, namespace, ks%calc%density, &
919 ks%calc%vxc, vtau = ks%calc%vtau)
921 call xc_get_nc_vxc(ks%gr, ks%xc, st, hm%kpoints, space, namespace, ks%calc%density, ks%calc%vxc)
937 if (ks%calc%calc_energy)
then
938 call xc_sic_calc_adsic(ks%sic, namespace, space, ks%gr, st, hm, ks%xc, ks%calc%density, &
939 ks%calc%vxc, ex = ks%calc%energy%exchange, ec = ks%calc%energy%correlation)
941 call xc_sic_calc_adsic(ks%sic, namespace, space, ks%gr, st, hm, ks%xc, ks%calc%density, &
953 call x_slater_calc(namespace, ks%gr, space, hm%exxop, st, hm%kpoints, ks%calc%energy%exchange, &
956 call x_fbe_calc(ks%xc%functional(
func_x,1)%id, namespace, hm%psolver, ks%gr, st, space, &
957 ks%calc%energy%exchange, vxc = ks%calc%vxc)
961 call fbe_c_lda_sl(namespace, hm%psolver, ks%gr, st, space, &
962 ks%calc%energy%correlation, vxc = ks%calc%vxc)
970 call xc_ks_inversion_calc(ks%ks_inversion, namespace, space, ks%gr, hm, ext_partners, st, vxc = ks%calc%vxc, &
975 if (ks%xc_photon /= 0)
then
977 call ks%xc_photons%v_ks(namespace, ks%calc%total_density, ks%gr, space, hm%psolver, hm%ep, st)
980 do ispin = 1, hm%d%spin_channels
981 call lalg_axpy(ks%gr%np,
m_one, ks%xc_photons%vpx(1:ks%gr%np), ks%calc%vxc(1:ks%gr%np, ispin) )
985 ks%calc%energy%photon_exchange = ks%xc_photons%ex
990 call ks%vdw%calc(namespace, space, latt, ions%atom, ions%natoms, ions%pos, &
991 ks%gr, st, ks%calc%energy%vdw, ks%calc%vxc)
993 if (ks%calc%calc_energy)
then
1006 subroutine v_ks_calc_finish(ks, hm, namespace, space, latt, st, ext_partners, force_semilocal)
1007 type(
v_ks_t),
target,
intent(inout) :: ks
1010 class(
space_t),
intent(in) :: space
1014 logical,
optional,
intent(in) :: force_semilocal
1016 integer :: ip, ispin
1019 real(real64) :: exx_energy
1020 real(real64) :: factor
1024 assert(ks%calc%calculating)
1025 ks%calc%calculating = .false.
1027 if (ks%frozen_hxc)
then
1033 safe_deallocate_a(hm%energy)
1034 call move_alloc(ks%calc%energy, hm%energy)
1036 if (hm%self_induced_magnetic)
then
1037 hm%a_ind(1:ks%gr%np, 1:space%dim) = ks%calc%a_ind(1:ks%gr%np, 1:space%dim)
1038 hm%b_ind(1:ks%gr%np, 1:space%dim) = ks%calc%b_ind(1:ks%gr%np, 1:space%dim)
1040 safe_deallocate_a(ks%calc%a_ind)
1041 safe_deallocate_a(ks%calc%b_ind)
1044 if (
allocated(hm%v_static))
then
1045 hm%energy%intnvstatic =
dmf_dotp(ks%gr, ks%calc%total_density, hm%v_static)
1047 hm%energy%intnvstatic =
m_zero
1053 hm%energy%intnvxc =
m_zero
1054 hm%energy%hartree =
m_zero
1055 hm%energy%exchange =
m_zero
1056 hm%energy%exchange_hf =
m_zero
1057 hm%energy%correlation =
m_zero
1060 hm%energy%hartree =
m_zero
1061 call v_ks_hartree(namespace, ks, space, hm, ext_partners)
1067 call dxc_oep_calc(ks%sic%oep, namespace, ks%xc, ks%gr, hm, st, space, &
1068 latt%rcell_volume, hm%energy%exchange, hm%energy%correlation, vxc = ks%calc%vxc)
1070 call zxc_oep_calc(ks%sic%oep, namespace, ks%xc, ks%gr, hm, st, space, &
1071 latt%rcell_volume, hm%energy%exchange, hm%energy%correlation, vxc = ks%calc%vxc)
1080 call dxc_oep_calc(ks%oep, namespace, ks%xc, ks%gr, hm, st, space, &
1081 latt%rcell_volume, hm%energy%exchange, hm%energy%correlation, vxc = ks%calc%vxc)
1083 call zxc_oep_calc(ks%oep, namespace, ks%xc, ks%gr, hm, st, space, &
1084 latt%rcell_volume, hm%energy%exchange, hm%energy%correlation, vxc = ks%calc%vxc)
1093 hm, st, space, hm%energy%exchange, hm%energy%correlation, vxc = ks%calc%vxc)
1096 hm, st, space, hm%energy%exchange, hm%energy%correlation, vxc = ks%calc%vxc)
1098 hm%energy%photon_exchange = ks%oep_photon%pt%ex
1102 if (ks%calc%calc_energy)
then
1104 hm%energy%intnvxc =
m_zero
1107 do ispin = 1, hm%d%nspin
1108 if (ispin <= 2)
then
1113 hm%energy%intnvxc = hm%energy%intnvxc + &
1114 factor*
dmf_dotp(ks%gr, st%rho(:, ispin), ks%calc%vxc(:, ispin), reduce = .false.)
1116 call ks%gr%allreduce(hm%energy%intnvxc)
1121 if (ks%theory_level /=
hartree .and. ks%theory_level /=
rdmft)
then
1123 safe_deallocate_a(hm%ks_pot%vxc)
1124 call move_alloc(ks%calc%vxc, hm%ks_pot%vxc)
1127 call hm%ks_pot%set_vtau(ks%calc%vtau)
1128 safe_deallocate_a(ks%calc%vtau)
1134 hm%energy%intnvxc = hm%energy%intnvxc &
1137 hm%energy%intnvxc = hm%energy%intnvxc &
1147 if (.not. ks%xc_photon_include_hartree)
then
1148 hm%energy%hartree =
m_zero
1149 hm%ks_pot%vhartree =
m_zero
1155 hm%ks_pot%vhxc(ip, 1) = hm%ks_pot%vxc(ip, 1) + hm%ks_pot%vhartree(ip)
1157 if (
allocated(hm%vberry))
then
1159 hm%ks_pot%vhxc(ip, 1) = hm%ks_pot%vhxc(ip, 1) + hm%vberry(ip, 1)
1165 hm%ks_pot%vhxc(ip, 2) = hm%ks_pot%vxc(ip, 2) + hm%ks_pot%vhartree(ip)
1167 if (
allocated(hm%vberry))
then
1169 hm%ks_pot%vhxc(ip, 2) = hm%ks_pot%vhxc(ip, 2) + hm%vberry(ip, 2)
1174 if (hm%d%ispin ==
spinors)
then
1177 hm%ks_pot%vhxc(ip, ispin) = hm%ks_pot%vxc(ip, ispin)
1183 hm%energy%exchange_hf =
m_zero
1185 .or. ks%theory_level ==
rdmft &
1189 if (.not. hm%exxop%useACE)
then
1191 if (
associated(hm%exxop%st))
then
1194 safe_deallocate_p(hm%exxop%st)
1205 select case (ks%theory_level)
1219 if (hm%exxop%useACE)
then
1223 ks%calc%hf_st, xst, hm%kpoints, exx_energy)
1227 ks%calc%hf_st, xst, hm%kpoints, exx_energy)
1228 if (hm%phase%is_allocated())
then
1235 exx_energy = exx_energy + hm%exxop%singul%energy
1239 select case (ks%theory_level)
1242 hm%energy%exchange_hf = hm%energy%exchange_hf + exx_energy
1245 hm%energy%exchange_hf = hm%energy%exchange_hf + exx_energy
1263 if (ks%has_photons .and. (ks%xc_photon == 0))
then
1264 if (
associated(ks%pt_mx%vmf))
then
1265 forall(ip = 1:ks%gr%np) hm%ks_pot%vhxc(ip, 1) = hm%ks_pot%vhxc(ip, 1) + ks%pt_mx%vmf(ip)
1267 forall(ip = 1:ks%gr%np) hm%ks_pot%vhxc(ip, 2) = hm%ks_pot%vhxc(ip, 2) + ks%pt_mx%vmf(ip)
1270 hm%ep%photon_forces(1:space%dim) = ks%pt_mx%fmf(1:space%dim)
1273 if (ks%vdw%vdw_correction /= option__vdwcorrection__none)
then
1274 hm%ep%vdw_forces(:, :) = ks%vdw%forces(:, :)
1275 hm%ep%vdw_stress = ks%vdw%stress
1276 safe_deallocate_a(ks%vdw%forces)
1278 hm%ep%vdw_forces = 0.0_real64
1281 if (ks%calc%time_present .or. hm%time_zero)
then
1282 call hm%update(ks%gr, namespace, space, ext_partners, time = ks%calc%time)
1288 safe_deallocate_a(ks%calc%density)
1289 if (ks%calc%total_density_alloc)
then
1290 safe_deallocate_p(ks%calc%total_density)
1292 nullify(ks%calc%total_density)
1303 subroutine v_ks_hartree(namespace, ks, space, hm, ext_partners)
1305 type(
v_ks_t),
intent(inout) :: ks
1306 class(
space_t),
intent(in) :: space
1314 call dpoisson_solve(hm%psolver, namespace, hm%ks_pot%vhartree, ks%calc%total_density, reset=.false.)
1320 if (ks%calc%calc_energy)
then
1322 hm%energy%hartree =
m_half*
dmf_dotp(ks%gr, ks%calc%total_density, hm%ks_pot%vhartree)
1326 if(ks%calc%time_present)
then
1329 ks%calc%total_density, hm%energy%pcm_corr, kick=hm%kick, time=ks%calc%time)
1332 ks%calc%total_density, hm%energy%pcm_corr, time=ks%calc%time)
1337 ks%calc%total_density, hm%energy%pcm_corr, kick=hm%kick)
1340 ks%calc%total_density, hm%energy%pcm_corr)
1351 type(
v_ks_t),
intent(inout) :: ks
1355 ks%frozen_hxc = .
true.
1362 type(
v_ks_t),
intent(inout) :: this
1363 logical,
intent(in) :: calc_cur
1367 this%calculate_current = calc_cur
1374 type(
v_ks_t),
intent(inout) :: ks
1378 real(real64),
intent(out) :: int_dft_u
constant times a vector plus a vector
scales a vector by a constant
This is the common interface to a sorting routine. It performs the shell algorithm,...
pure logical function, public accel_is_enabled()
subroutine, public current_calculate(this, namespace, gr, hm, space, st)
Compute total electronic current density.
subroutine, public current_init(this, namespace)
This module implements a calculator for the density and defines related functions.
subroutine, public states_elec_total_density(st, mesh, total_rho)
This routine calculates the total electronic density.
subroutine, public density_calc(st, gr, density, istin)
Computes the density from the orbitals in st.
This module calculates the derivatives (gradients, Laplacians, etc.) of a function.
integer, parameter, public unpolarized
Parameters...
integer, parameter, public spinors
subroutine, public energy_calc_total(namespace, space, hm, gr, st, ext_partners, iunit, full)
This subroutine calculates the total energy of the system. Basically, it adds up the KS eigenvalues,...
real(real64) function, public zenergy_calc_electronic(namespace, hm, der, st, terms)
real(real64) function, public denergy_calc_electronic(namespace, hm, der, st, terms)
subroutine, public energy_calc_eigenvalues(namespace, hm, der, st)
subroutine, public energy_copy(ein, eout)
subroutine, public dexchange_operator_ace(this, namespace, mesh, st, xst, phase)
subroutine, public zexchange_operator_compute_potentials(this, namespace, space, gr, st, xst, kpoints, ex, F_out)
subroutine, public dexchange_operator_compute_potentials(this, namespace, space, gr, st, xst, kpoints, ex, F_out)
subroutine, public zexchange_operator_ace(this, namespace, mesh, st, xst, phase)
subroutine, public exchange_operator_reinit(this, omega, alpha, beta, st)
real(real64), parameter, public m_two
real(real64), parameter, public m_zero
real(real64), parameter, public m_epsilon
real(real64), parameter, public m_half
real(real64), parameter, public m_one
This module implements the underlying real-space grid.
integer, parameter, public term_mgga
integer, parameter, public term_dft_u
logical function, public hamiltonian_elec_has_kick(hm)
logical function, public hamiltonian_elec_needs_current(hm, states_are_real)
subroutine, public hamiltonian_elec_update_pot(this, mesh, accumulate)
Update the KS potential of the electronic Hamiltonian.
This module defines classes and functions for interaction partners.
A module to handle KS potential, without the external potential.
integer, parameter, public rdmft
integer, parameter, public hartree
integer, parameter, public hartree_fock
integer, parameter, public independent_particles
integer, parameter, public generalized_kohn_sham_dft
integer, parameter, public kohn_sham_dft
integer, parameter, public dft_u_none
This modules implements the routines for doing constrain DFT for noncollinear magnetism.
integer, parameter, public constrain_none
subroutine, public magnetic_constrain_update(this, mesh, std, space, latt, pos, rho)
Recomputes the magnetic contraining potential.
subroutine, public magnetic_induced(namespace, gr, st, psolver, kpoints, a_ind, b_ind)
This subroutine receives as input a current, and produces as an output the vector potential that it i...
This module defines various routines, operating on mesh functions.
This module defines the meshes, which are used in Octopus.
subroutine, public messages_print_with_emphasis(msg, iunit, namespace)
subroutine, public messages_not_implemented(feature, namespace)
character(len=512), private msg
subroutine, public messages_warning(no_lines, all_nodes, namespace)
subroutine, public messages_obsolete_variable(namespace, name, rep)
subroutine, public messages_new_line()
character(len=256), dimension(max_lines), public message
to be output by fatal, warning
subroutine, public messages_fatal(no_lines, only_root_writes, namespace)
subroutine, public messages_input_error(namespace, var, details, row, column)
subroutine, public messages_experimental(name, namespace)
subroutine, public messages_info(no_lines, iunit, debug_only, stress, all_nodes, namespace)
This module handles the communicators for the various parallelization strategies.
logical function, public parse_is_defined(namespace, name)
subroutine, public pcm_hartree_potential(pcm, space, mesh, psolver, ext_partners, vhartree, density, pcm_corr, kick, time)
PCM reaction field due to the electronic density.
subroutine, public mf_calc(this, gr, st, ions, pt_mode, time)
subroutine, public dpoisson_solve_start(this, rho)
subroutine, public dpoisson_solve(this, namespace, pot, rho, all_nodes, kernel, reset)
Calculates the Poisson equation. Given the density returns the corresponding potential.
subroutine, public dpoisson_solve_finish(this, pot)
logical pure function, public poisson_is_async(this)
subroutine, public profiling_out(label)
Increment out counter and sum up difference between entry and exit time.
subroutine, public profiling_in(label, exclude)
Increment in counter and save entry time.
integer, parameter, public pseudo_exchange_unknown
integer, parameter, public pseudo_correlation_unknown
integer, parameter, public pseudo_correlation_any
integer, parameter, public pseudo_exchange_any
This module is intended to contain "only mathematical" functions and procedures.
integer, parameter, private libxc_c_index
pure logical function, public states_are_complex(st)
pure logical function, public states_are_real(st)
This module handles spin dimensions of the states and the k-point distribution.
subroutine, public states_elec_fermi(st, namespace, mesh, compute_spin)
calculate the Fermi level for the states in this object
subroutine, public states_elec_end(st)
finalize the states_elec_t object
subroutine, public states_elec_copy(stout, stin, exclude_wfns, exclude_eigenval, special)
make a (selective) copy of a states_elec_t object
subroutine, public states_elec_allocate_current(st, space, mesh)
This module provides routines for communicating states when using states parallelization.
subroutine, public states_elec_parallel_remote_access_stop(this)
stop remote memory access for states on other processors
subroutine, public states_elec_parallel_remote_access_start(this)
start remote memory access for states on other processors
subroutine v_ks_hartree(namespace, ks, space, hm, ext_partners)
Hartree contribution to the KS potential. This function is designed to be used by v_ks_calc_finish an...
subroutine, public v_ks_calc_finish(ks, hm, namespace, space, latt, st, ext_partners, force_semilocal)
subroutine, public v_ks_freeze_hxc(ks)
subroutine, public v_ks_end(ks)
subroutine, public v_ks_calculate_current(this, calc_cur)
subroutine, public v_ks_write_info(ks, iunit, namespace)
subroutine, public v_ks_update_dftu_energy(ks, namespace, hm, st, int_dft_u)
Update the value of <\psi | V_U | \psi>, where V_U is the DFT+U potential.
subroutine, public v_ks_calc_start(ks, namespace, space, hm, st, ions, latt, ext_partners, time, calc_energy, calc_current, force_semilocal)
This routine starts the calculation of the Kohn-Sham potential. The routine v_ks_calc_finish must be ...
subroutine, public v_ks_calc(ks, namespace, space, hm, st, ions, ext_partners, calc_eigenval, time, calc_energy, calc_current, force_semilocal)
subroutine, public v_ks_h_setup(namespace, space, gr, ions, ext_partners, st, ks, hm, calc_eigenval, calc_current)
subroutine, public v_ks_init(ks, namespace, gr, st, ions, mc, space, kpoints)
subroutine, public x_slater_calc(namespace, gr, space, exxop, st, kpoints, ex, vxc)
Interface to X(slater_calc)
subroutine, public x_fbe_calc(id, namespace, psolver, gr, st, space, ex, vxc)
Interface to X(x_fbe_calc) Two possible run modes possible: adiabatic and Sturm-Liouville....
subroutine, public fbe_c_lda_sl(namespace, psolver, gr, st, space, ec, vxc)
Sturm-Liouville version of the FBE local-density correlation functional.
integer, parameter, public xc_family_ks_inversion
declaring 'family' constants for 'functionals' not handled by libxc careful not to use a value define...
integer function, public xc_get_default_functional(dim, pseudo_x_functional, pseudo_c_functional)
Returns the default functional given the one parsed from the pseudopotentials and the space dimension...
integer, parameter, public xc_family_nc_mgga
integer, parameter, public xc_oep_x
Exact exchange.
integer, parameter, public xc_lda_c_fbe_sl
LDA correlation based ib the force-balance equation - Sturm-Liouville version.
integer, parameter, public xc_family_nc_lda
integer, parameter, public xc_oep_x_fbe_sl
Exchange approximation based on the force balance equation - Sturn-Liouville version.
integer, parameter, public xc_oep_x_fbe
Exchange approximation based on the force balance equation.
integer, parameter, public xc_oep_x_slater
Slater approximation to the exact exchange.
integer, parameter, public func_c
integer, parameter, public func_x
subroutine, public xc_ks_inversion_end(ks_inv)
subroutine, public xc_ks_inversion_write_info(ks_inversion, iunit, namespace)
subroutine, public xc_ks_inversion_init(ks_inv, namespace, gr, ions, st, xc, mc, space, kpoints)
subroutine, public xc_ks_inversion_calc(ks_inversion, namespace, space, gr, hm, ext_partners, st, vxc, time)
subroutine, public xc_write_info(xcs, iunit, namespace)
subroutine, public xc_init(xcs, namespace, ndim, periodic_dim, nel, x_id, c_id, xk_id, ck_id, hartree_fock, ispin)
pure logical function, public family_is_mgga(family, only_collinear)
Is the xc function part of the mGGA family.
logical pure function, public family_is_mgga_with_exc(xcs)
Is the xc function part of the mGGA family with an energy functional.
subroutine, public xc_end(xcs)
subroutine, public xc_get_vxc(gr, xcs, st, kpoints, psolver, namespace, space, rho, ispin, rcell_volume, vxc, ex, ec, deltaxc, vtau, ex_density, ec_density, stress_xc, force_orbitalfree)
logical pure function, public family_is_hybrid(xcs)
Returns true if the functional is an hybrid functional.
subroutine, public xc_get_nc_vxc(gr, xcs, st, kpoints, space, namespace, rho, vxc, ex, ec, vtau, ex_density, ec_density)
This routines is similar to xc_get_vxc but for noncollinear functionals, which are not implemented in...
integer, parameter, public oep_type_mgga
integer, parameter, public oep_level_none
the OEP levels
subroutine, public xc_oep_end(oep)
subroutine, public zxc_oep_calc(oep, namespace, xcs, gr, hm, st, space, rcell_volume, ex, ec, vxc)
This file handles the evaluation of the OEP potential, in the KLI or full OEP as described in S....
subroutine, public dxc_oep_calc(oep, namespace, xcs, gr, hm, st, space, rcell_volume, ex, ec, vxc)
This file handles the evaluation of the OEP potential, in the KLI or full OEP as described in S....
subroutine, public xc_oep_write_info(oep, iunit, namespace)
integer, parameter, public oep_type_exx
The different types of OEP that we can work with.
subroutine, public xc_oep_init(oep, namespace, gr, st, mc, space, oep_type)
subroutine, public zxc_oep_photon_calc(oep, namespace, xcs, gr, hm, st, space, ex, ec, vxc)
This file handles the evaluation of the OEP potential, in the KLI or full OEP as described in S....
subroutine, public dxc_oep_photon_calc(oep, namespace, xcs, gr, hm, st, space, ex, ec, vxc)
This file handles the evaluation of the OEP potential, in the KLI or full OEP as described in S....
This module implements the "photon-free" electron-photon exchange-correlation functional.
integer, parameter, public sic_none
no self-interaction correction
subroutine, public xc_sic_write_info(sic, iunit, namespace)
integer, parameter, public sic_adsic
Averaged density SIC.
subroutine, public xc_sic_init(sic, namespace, gr, st, mc, space)
initialize the SIC object
subroutine, public xc_sic_end(sic)
finalize the SIC and, if needed, the included OEP
integer, parameter, public sic_pz_oep
Perdew-Zunger SIC (OEP way)
integer, parameter, public sic_amaldi
Amaldi correction term.
subroutine, public xc_sic_calc_adsic(sic, namespace, space, gr, st, hm, xc, density, vxc, ex, ec)
Computes the ADSIC potential and energy.
A module that takes care of xc contribution from vdW interactions.
Extension of space that contains the knowledge of the spin dimension.
Description of the grid, containing information on derivatives, stencil, and symmetries.
The states_elec_t class contains all electronic wave functions.
subroutine get_functional_from_pseudos(x_functional, c_functional)
Tries to find out the functional from the pseudopotential.
subroutine v_a_xc(hm, force_semilocal)
subroutine calculate_density()