| 
| interface   | scalapack_oct_m::iceil | 
|   | 
| interface   | scalapack_oct_m::descinit | 
|   | 
| interface   | scalapack_oct_m::infog2l | 
|   | 
| interface   | scalapack_oct_m::scalapack_geqrf | 
|   | Computes a QR factorization of a real distributed \( m \times n\).  More...
  | 
|   | 
| interface   | scalapack_oct_m::scalapack_orgqr | 
|   | Generates an \( m \times n\) real distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal columns, which is defined as the first N columns of a product of K elementary reflectors of order M.  More...
  | 
|   | 
| interface   | scalapack_oct_m::pdgesv | 
|   | 
| interface   | scalapack_oct_m::pzgesv | 
|   | 
| interface   | scalapack_oct_m::scalapack_syev | 
|   | Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A by calling the recommended sequence of ScaLAPACK routines.  More...
  | 
|   | 
| interface   | scalapack_oct_m::scalapack_syevx | 
|   | Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A by calling the recommended sequence of ScaLAPACK routines. Eigenvalues/vectors can be selected by specifying a range of values or a range of indices for the desired eigenvalues.  More...
  | 
|   | 
| interface   | scalapack_oct_m::scalapack_sygvx | 
|   | Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized SY-definite eigenproblem, of the form \( sub( A ) x=(\lambda) sub( B ) x, sub( A ) sub( B ) x=(\lambda) x, \mbox{ or }
 sub( B ) sub( A ) x=(\lambda) x \). Here sub(A) denoting A(IA:IA+N-1, JA:JA+N-1) is assumed to be SY, and sub(B) denoting B(IB:IB+N-1, JB:JB+N-1) is assumed to be symmetric positive definite.  More...
  | 
|   | 
| interface   | scalapack_oct_m::scalapack_hegvx | 
|   | Computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form \( sub( A ) x=(\lambda) sub( B ) x, sub( A ) sub( B ) x=(\lambda) x, \mbox{ or }
 sub( B ) sub( A ) x=(\lambda) x \). Here sub(A) denoting A(IA:IA+N-1, JA:JA+N-1) is assumed to be Hermitian, and sub(B) denoting B(IB:IB+N-1, JB:JB+N-1) is assumed to be Hermitian positive definite.  More...
  | 
|   | 
| interface   | scalapack_oct_m::scalapack_potrf | 
|   | Computes the Cholesky factorization of an \( n \times n \) real symmetric positive definite distributed matrix sub(A) denoting A(IA:IA+N-1, JA:JA+N-1).  More...
  | 
|   | 
| interface   | scalapack_oct_m::pzlacp3 | 
|   | 
| interface   | scalapack_oct_m::pdlacp3 | 
|   | 
| interface   | scalapack_oct_m::indxl2g | 
|   | 
| interface   | scalapack_oct_m::indxg2l | 
|   | 
| interface   | scalapack_oct_m::indxg2p | 
|   |