| 
| elemental logical function  | math_oct_m::dis_close_scalar (x, y, rtol, atol) | 
|   | Are \(x\) and \(y\) equal within a tolerance.  More...
  | 
|   | 
| elemental logical function  | math_oct_m::zis_close_scalar (x, y, rtol, atol) | 
|   | Same as dis_close_scalar for complex numbers.  More...
  | 
|   | 
| pure integer function, dimension(dim, dim)  | math_oct_m::idiagonal_matrix (dim, diag) | 
|   | Currently only returns a matrix whose diagonal elements are all the same. Note that the real and complex versions are in math_inc.F90.  More...
  | 
|   | 
| recursive real(real64) function, public  | math_oct_m::hermite (n, x) | 
|   | 
| recursive integer function, public  | math_oct_m::factorial (n) | 
|   | 
| subroutine, public  | math_oct_m::ylmr_cmplx (xx, li, mi, ylm) | 
|   | Computes spherical harmonics ylm at position (x, y, z)  More...
  | 
|   | 
| subroutine, public  | math_oct_m::ylmr_real (xx, li, mi, ylm) | 
|   | This is a Numerical Recipes-based subroutine computes real spherical harmonics ylm at position (x, y, z): ylm = c * plm( cos(theta) ) * sin(m*phi) for m < 0 ylm = c * plm( cos(theta) ) * cos(m*phi) for m >= 0 with (theta,phi) the polar angles of r, c a positive normalization.  More...
  | 
|   | 
| subroutine, public  | math_oct_m::weights (N, M, cc, side) | 
|   | Compute the weights for finite-difference calculations:  More...
  | 
|   | 
| real(real64) pure function, public  | math_oct_m::ddelta (i, j) | 
|   | 
| subroutine, public  | math_oct_m::make_idx_set (n, out, length, in) | 
|   | Construct out(1:length) = (/1, ..., n/) if in is not present, out(1:length) = in otherwise.  More...
  | 
|   | 
| logical function, public  | math_oct_m::member (n, a) | 
|   | Considers a(1:ubound(a, 1)) as an integer set and checks if n is a member of it.  More...
  | 
|   | 
| subroutine, public  | math_oct_m::interpolation_coefficients (nn, xa, xx, cc) | 
|   | 
| logical pure function, public  | math_oct_m::even (n) | 
|   | Returns if n is even.  More...
  | 
|   | 
| logical pure function, public  | math_oct_m::odd (n) | 
|   | Returns if n is odd.  More...
  | 
|   | 
| subroutine, public  | math_oct_m::cartesian2hyperspherical (x, u) | 
|   | Performs a transformation of an n-dimensional vector from Cartesian coordinates to hyperspherical coordinates.  More...
  | 
|   | 
| subroutine, public  | math_oct_m::hyperspherical2cartesian (u, x) | 
|   | Performs the inverse transformation of cartesian2hyperspherical.  More...
  | 
|   | 
| subroutine, public  | math_oct_m::hypersphere_grad_matrix (grad_matrix, r, x) | 
|   | Gives the hyperspherical gradient matrix, which contains the derivatives of the Cartesian coordinates with respect to the hyperspherical angles.  More...
  | 
|   | 
| integer(int64) pure function  | math_oct_m::pad88 (size, blk) | 
|   | 
| integer(int64) pure function  | math_oct_m::pad48 (size, blk) | 
|   | 
| integer(int64) pure function  | math_oct_m::pad8 (size, blk) | 
|   | 
| integer pure function  | math_oct_m::pad4 (size, blk) | 
|   | 
| integer pure function, public  | math_oct_m::pad_pow2 (size) | 
|   | create array size, which is padded to powers of 2  More...
  | 
|   | 
| real(real64) pure function  | math_oct_m::dlog2 (xx) | 
|   | 
| integer pure function  | math_oct_m::ilog2 (xx) | 
|   | 
| integer(int64) pure function  | math_oct_m::llog2 (xx) | 
|   | 
| complex(real64) pure function, public  | math_oct_m::exponential (z) | 
|   | Wrapper for exponential.  More...
  | 
|   | 
| complex(real64) pure function, public  | math_oct_m::phi1 (z) | 
|   | Compute phi1(z) = (exp(z)-1)/z.  More...
  | 
|   | 
| complex(real64) pure function, public  | math_oct_m::phi2 (z) | 
|   | Compute phi2(z) = (phi1(z)-1)/z = (exp(z) - z - 1)/z^2.  More...
  | 
|   | 
| logical function, public  | math_oct_m::is_prime (n) | 
|   | 
| subroutine, public  | math_oct_m::generate_rotation_matrix (R, ff, tt) | 
|   | Generates a rotation matrix R to rotate a vector f to t.  More...
  | 
|   | 
| subroutine, public  | math_oct_m::numder_ridders (x, h, res, err, f) | 
|   | Numerical derivative (Ridder`s algorithm).  More...
  | 
|   | 
| pure complex(real64) function, dimension(1:3), public  | math_oct_m::dzcross_product (a, b) | 
|   | 
| pure complex(real64) function, dimension(1:3), public  | math_oct_m::zdcross_product (a, b) | 
|   | 
| subroutine, public  | math_oct_m::generalized_laguerre_polynomial (np, nn, mm, xx, cx) | 
|   | 
| subroutine  | math_oct_m::dupper_triangular_to_hermitian (nn, aa) | 
|   | 
| subroutine  | math_oct_m::zupper_triangular_to_hermitian (nn, aa) | 
|   | 
| subroutine  | math_oct_m::dlower_triangular_to_hermitian (nn, aa) | 
|   | 
| subroutine  | math_oct_m::zlower_triangular_to_hermitian (nn, aa) | 
|   | 
| subroutine, public  | math_oct_m::dsymmetrize_matrix (nn, aa) | 
|   | 
| subroutine, public  | math_oct_m::dzero_small_elements_matrix (nn, aa, tol) | 
|   | 
| pure complex(real64) function, dimension(dim, dim)  | math_oct_m::zdiagonal_matrix (dim, diag) | 
|   | Currently only returns a matrix whose diagonal elements are all the same. Note that the integer version is in math.F90.  More...
  | 
|   | 
| subroutine  | math_oct_m::zinterpolate_2 (xa, ya, x, y) | 
|   | 
| subroutine  | math_oct_m::zinterpolate_1 (xa, ya, x, y) | 
|   | 
| subroutine  | math_oct_m::zinterpolate_0 (xa, ya, x, y) | 
|   | 
| pure complex(real64) function, dimension(1:3), public  | math_oct_m::zcross_product (a, b) | 
|   | 
| pure real(real64) function, dimension(dim, dim)  | math_oct_m::ddiagonal_matrix (dim, diag) | 
|   | Currently only returns a matrix whose diagonal elements are all the same. Note that the integer version is in math.F90.  More...
  | 
|   | 
| subroutine  | math_oct_m::dinterpolate_2 (xa, ya, x, y) | 
|   | 
| subroutine  | math_oct_m::dinterpolate_1 (xa, ya, x, y) | 
|   | 
| subroutine  | math_oct_m::dinterpolate_0 (xa, ya, x, y) | 
|   | 
| pure real(real64) function, dimension(1:3), public  | math_oct_m::dcross_product (a, b) | 
|   |