| 
| subroutine  | chebyshev_coefficients_oct_m::chebyshev_set_parameters (this, half_span, middle_point, deltat) | 
|   | 
| class(chebyshev_exp_t) function, pointer  | chebyshev_coefficients_oct_m::chebyshev_exp_constructor (half_span, middle_point, deltat) | 
|   | 
| subroutine  | chebyshev_coefficients_oct_m::chebyshev_exp_coefficients (this, order, coefficients) | 
|   | 
| real(real64) function  | chebyshev_coefficients_oct_m::chebyshev_exp_error (this, order) | 
|   | Use the error estimate from Lubich, C. From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis. (EMS Press, 2008), doi:10.4171/067, Theorems 2.1 to 2.4.  More...
  | 
|   | 
| class(chebyshev_exp_imagtime_t) function, pointer  | chebyshev_coefficients_oct_m::chebyshev_exp_imagtime_constructor (half_span, middle_point, deltat) | 
|   | 
| subroutine  | chebyshev_coefficients_oct_m::chebyshev_exp_imagtime_coefficients (this, order, coefficients) | 
|   | 
| real(real64) function  | chebyshev_coefficients_oct_m::chebyshev_exp_imagtime_error (this, order) | 
|   | Use the error estimate from Hochbruck, M. & Ostermann, A. Exponential integrators. Acta Numerica 19, 209–286 (2010), Theorem 4.1 (page 265) and L. Bergamaschi and M. Vianello: Efficient computation of the exponential operator for large, sparse, symmetric matrices, Numer. Linear Algebra Appl. 7, 27–45 (2000), eq. 2.7.  More...
  | 
|   | 
| class(chebyshev_numerical_t) function, pointer  | chebyshev_coefficients_oct_m::chebyshev_numerical_constructor (half_span, middle_point, deltat, complex_function) | 
|   | 
| subroutine  | chebyshev_coefficients_oct_m::chebyshev_numerical_coefficients (this, order, coefficients) | 
|   | use a discrete cosine transform to compute the coefficients because no analytical formula is available for the phi_k functions  More...
  | 
|   | 
| real(real64) function  | chebyshev_coefficients_oct_m::chebyshev_numerical_error (this, order) | 
|   | use the error estimate from Lubich, C. From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis. (EMS Press, 2008), doi:10.4171/067, Theorems 2.1 to 2.4  More...
  | 
|   |