# Difference between revisions of "Tutorial:Sternheimer linear response"

m |
|||

(One intermediate revision by the same user not shown) | |||

Line 56: | Line 56: | ||

and we will also specify a small imaginary part to the frequency of 0.1 {{units|eV}}, which avoids divergence on resonance: | and we will also specify a small imaginary part to the frequency of 0.1 {{units|eV}}, which avoids divergence on resonance: | ||

− | {{variable|EMEta|Linear_Response}} = 0.1 | + | {{variable|EMEta|Linear_Response}} = 0.1*eV |

and finally we add a specification of the linear solver, which will greatly speed things up compared to the default: | and finally we add a specification of the linear solver, which will greatly speed things up compared to the default: | ||

Line 143: | Line 143: | ||

[[Category:DFT]] | [[Category:DFT]] | ||

[[Category:Optical Absorption]] | [[Category:Optical Absorption]] | ||

+ | [[Category:Sternheimer]] |

## Latest revision as of 09:58, 24 September 2020

The Sternheimer approach to perturbation theory allows efficient calculations of linear and non-linear response properties.^{[1]}
The basis of this method, just as in standard perturbation theory, is to calculate the variation of the wave-functions under a given perturbing potential. The advantage of the method is that the variations are obtained by solving the linear equation

that only depends on the occupied states instead of requiring an (infinite) sum over unoccupied states. In the case of (time-dependent) density functional theory the variation of the Hamiltonian includes a term that depends on the variation of the density, so this equation must be solved self-consistently.

To run a Sternheimer calculation with Octopus, the only previous calculation you need is a ground-state calculation. For this tutorial we will use a water molecule, with this basic input file for the ground state:

`CalculationMode`

= gs %`Coordinates`

'O' | 0.000000 | -0.553586 | 0.000000 'H' | 1.429937 | 0.553586 | 0.000000 'H' | -1.429937 | 0.553586 | 0.000000 %`Radius`

= 10`Spacing`

= 0.435`ConvRelDens`

= 1e-6

We use a tighter setting on SCF convergence (ConvRelDens) which will help the ability of the Sternheimer calculation to converge numerically, and we increase a bit the size of the box as response calculations tend to require more space around the molecule than ground-state calculations to be converged.^{[2]}

After the ground-state calculation is finished, we change the run mode to `em_resp`

, to run a calculation of the electric-dipole response:

`CalculationMode`

= em_resp

Next, to specify the frequency of the response we use the `EMFreqs`

block; in this case we will use three values 0.00, 0.15 and 0.30 [Ha]:

`%``EMFreqs`

3 | 0.0 | 0.3
%

and we will also specify a small imaginary part to the frequency of 0.1 [eV], which avoids divergence on resonance:

`EMEta`

= 0.1*eV

and finally we add a specification of the linear solver, which will greatly speed things up compared to the default:

`LinearSolver`

= qmr_dotp`ExperimentalFeatures`

= yes

In the run, you will see calculations for each frequency for the *x*, *y*, and *z* directions, showing SCF iterations, each having linear-solver iterations for the individual states' , labelled by the k-point/spin (ik) and state (ist). The norm of , the number of linear-solver iterations (iter), and the residual are shown for each. First we see the static response:

****************** Linear-Response Polarizabilities ****************** Wavefunctions type: Complex Calculating response for 3 frequencies. ********************************************************************** Info: Calculating response for the x-direction and frequency 0.0000. Info: EM Resp. restart information will be written to 'restart/em_resp'. Info: EM Resp. restart information will be read from 'restart/em_resp'. ** Warning: ** Unable to read response wavefunctions from 'wfs_x_f1+': Initializing to zero. Info: Finished reading information from 'restart/em_resp'. -------------------------------------------- LR SCF Iteration: 1 Frequency: 0.000000 Eta : 0.003675 ik ist norm iters residual 1 1 0.216316 21 0.110754E-03 1 2 1.573042 21 0.286815E-02 1 3 1.620482 21 0.973599E-02 1 4 1.177410 21 0.540540E-03 Info: Writing states. 2016/01/14 at 19:50:27 Info: Finished writing states. 2016/01/14 at 19:50:27 SCF Residual: 0.122899E+01 (abs), 0.153623E+00 (rel)

Later will come the dynamical response. The negative state indices listed indicate response for . For each frequency, the code will try to use a saved response density from the closest previously calculated frequency.

Info: Calculating response for the x-direction and frequency 0.1500. Info: EM Resp. restart information will be written to 'restart/em_resp'. Info: EM Resp. restart information will be read from 'restart/em_resp'. Read response density 'rho_0.0000_1'. Info: Finished reading information from 'restart/em_resp'. -------------------------------------------- LR SCF Iteration: 1 Frequency: 0.150000 Eta : 0.003675 ik ist norm iters residual 1 1 0.181350 8 0.136183E-02 1 -1 0.240803 19 0.794480E-04 1 2 0.953447 8 0.508247E-02 1 -2 1.708845 19 0.166997E-02 1 3 0.864834 8 0.858907E-02 1 -3 1.780595 19 0.984578E-02 1 4 0.725681 8 0.529092E-02 1 -4 1.421823 19 0.536713E-03

At the end, you will have a directory called ** em_resp** containing a subdirectory for each frequency calculated, each in turn containing

**(listing = 0.1 [eV]),**

`eta`**(containing the real part of the polarizability tensor), and**

`alpha`**(containing the cross-section for absorption, based on the imaginary part of the polarizability).**

`cross_section`For example, ** em_resp/freq_0.0000/alpha** says

# Polarizability tensor [b^3] 10.238694 -0.000000 -0.000000 0.000000 10.771834 -0.000000 -0.000000 -0.000000 9.677212 Isotropic average 10.229247

Exercise: compare results for polarizability or cross-section to a calculation from time-propagation or the Casida approach.

## References

- ↑
Xavier Andrade, Silvana Botti, Miguel Marques and Angel Rubio,
*Time-dependent density functional theory scheme for efficient calculations of dynamic (hyper)polarizabilities*, J. Chem. Phys**126**184106 (2007) - ↑
F. D. Vila, D. A. Strubbe, Y. Takimoto, X. Andrade, A. Rubio, S. G. Louie, and J. J. Rehr,
*Basis set effects on the hyperpolarizability of CHCl*, J. Chem. Phys._{3}: Gaussian-type orbitals, numerical basis sets and real-space grids**133**034111 (2010)