
Motivation Continuous Integration Tests Remarks

Testing and Continuous Integration

Martin Lüders

Octopus Course 2021, MPSD Hamburg

Testing and CI Martin Lüders 1 / 12



Motivation Continuous Integration Tests Remarks

Motivation

Main use of scientific codes:

Produce scientific results, often predictions

Implement new theoretical developments

Both assume and require that the code gives correct results!

But: Scientific codes are extremely complex!

Easy to make mistakes

Methods might be numerically unstable

Theory level might not be adequate

=⇒ All needs to be carefully tested!

Testing and CI Martin Lüders 2 / 12



Motivation Continuous Integration Tests Remarks

Motivation

Main use of scientific codes:

Produce scientific results, often predictions

Implement new theoretical developments

Both assume and require that the code gives correct results!

But: Scientific codes are extremely complex!

Easy to make mistakes

Methods might be numerically unstable

Theory level might not be adequate

=⇒ All needs to be carefully tested!

Testing and CI Martin Lüders 2 / 12



Motivation Continuous Integration Tests Remarks

Motivation

Main use of scientific codes:

Produce scientific results, often predictions

Implement new theoretical developments

Both assume and require that the code gives correct results!

But: Scientific codes are extremely complex!

Easy to make mistakes

Methods might be numerically unstable

Theory level might not be adequate

=⇒ All needs to be carefully tested!

Testing and CI Martin Lüders 2 / 12



Motivation Continuous Integration Tests Remarks

Motivation

Main use of scientific codes:

Produce scientific results, often predictions

Implement new theoretical developments

Both assume and require that the code gives correct results!

But: Scientific codes are extremely complex!

Easy to make mistakes

Methods might be numerically unstable

Theory level might not be adequate

=⇒ All needs to be carefully tested!

Testing and CI Martin Lüders 2 / 12



Motivation Continuous Integration Tests Remarks

Testing is difficult

What we would like to test:

The code gives correct results!

The code does what the algorithms promise (no bugs)

unit tests
test against exact results

The algorithms are appropriate to represent the theory

test against exact results

The theory is adequate to describe nature

test against analytical models

Most of the above need to be done by hand by developers.

Testing and CI Martin Lüders 3 / 12



Motivation Continuous Integration Tests Remarks

Testing is difficult

What we would like to test: The code gives correct results!

The code does what the algorithms promise (no bugs)

unit tests
test against exact results

The algorithms are appropriate to represent the theory

test against exact results

The theory is adequate to describe nature

test against analytical models

Most of the above need to be done by hand by developers.

Testing and CI Martin Lüders 3 / 12



Motivation Continuous Integration Tests Remarks

Testing is difficult

What we would like to test: The code gives correct results!

The code does what the algorithms promise (no bugs)

unit tests
test against exact results

The algorithms are appropriate to represent the theory

test against exact results

The theory is adequate to describe nature

test against analytical models

Most of the above need to be done by hand by developers.

Testing and CI Martin Lüders 3 / 12



Motivation Continuous Integration Tests Remarks

Testing is difficult

What we would like to test: The code gives correct results!

The code does what the algorithms promise (no bugs)

unit tests

test against exact results

The algorithms are appropriate to represent the theory

test against exact results

The theory is adequate to describe nature

test against analytical models

Most of the above need to be done by hand by developers.

Testing and CI Martin Lüders 3 / 12



Motivation Continuous Integration Tests Remarks

Testing is difficult

What we would like to test: The code gives correct results!

The code does what the algorithms promise (no bugs)

unit tests
test against exact results

The algorithms are appropriate to represent the theory

test against exact results

The theory is adequate to describe nature

test against analytical models

Most of the above need to be done by hand by developers.

Testing and CI Martin Lüders 3 / 12



Motivation Continuous Integration Tests Remarks

Testing is difficult

What we would like to test: The code gives correct results!

The code does what the algorithms promise (no bugs)

unit tests
test against exact results

The algorithms are appropriate to represent the theory

test against exact results

The theory is adequate to describe nature

test against analytical models

Most of the above need to be done by hand by developers.

Testing and CI Martin Lüders 3 / 12



Motivation Continuous Integration Tests Remarks

Testing is difficult

What we would like to test: The code gives correct results!

The code does what the algorithms promise (no bugs)

unit tests
test against exact results

The algorithms are appropriate to represent the theory

test against exact results

The theory is adequate to describe nature

test against analytical models

Most of the above need to be done by hand by developers.

Testing and CI Martin Lüders 3 / 12



Motivation Continuous Integration Tests Remarks

Testing is difficult

What we would like to test: The code gives correct results!

The code does what the algorithms promise (no bugs)

unit tests
test against exact results

The algorithms are appropriate to represent the theory

test against exact results

The theory is adequate to describe nature

test against analytical models

Most of the above need to be done by hand by developers.

Testing and CI Martin Lüders 3 / 12



Motivation Continuous Integration Tests Remarks

Testing is difficult

What we would like to test: The code gives correct results!

The code does what the algorithms promise (no bugs)

unit tests
test against exact results

The algorithms are appropriate to represent the theory

test against exact results

The theory is adequate to describe nature

test against analytical models

Most of the above need to be done by hand by developers.

Testing and CI Martin Lüders 3 / 12



Motivation Continuous Integration Tests Remarks

Testing is difficult

What we would like to test: The code gives correct results!

The code does what the algorithms promise (no bugs)

unit tests
test against exact results

The algorithms are appropriate to represent the theory

test against exact results

The theory is adequate to describe nature

test against analytical models

Most of the above need to be done by hand by developers.

Testing and CI Martin Lüders 3 / 12



Motivation Continuous Integration Tests Remarks

Testing is difficult

What we would like to test: The code gives correct results!

The code does what the algorithms promise (no bugs)

unit tests
test against exact results

The algorithms are appropriate to represent the theory

test against exact results

The theory is adequate to describe nature

test against analytical models

Most of the above need to be done by hand by developers.

Testing and CI Martin Lüders 3 / 12



Motivation Continuous Integration Tests Remarks

Regression testing

The ”easy” part:

Assume the code is correct at some point.

Make sure future developments don’t break it!

Regression testing:

set up calculation which tests new development

record reference values (assumed to be ”correct”)

automatically test changes to the code against these reference values.

Tests should run on different computers and with different compilers

Tests should probe all parts of the code

Tests should run in a reasonable time

Tests to check performance (performance regression tests)

Testing and CI Martin Lüders 4 / 12



Motivation Continuous Integration Tests Remarks

Regression testing

The ”easy” part:

Assume the code is correct at some point.

Make sure future developments don’t break it!

Regression testing:

set up calculation which tests new development

record reference values (assumed to be ”correct”)

automatically test changes to the code against these reference values.

Tests should run on different computers and with different compilers

Tests should probe all parts of the code

Tests should run in a reasonable time

Tests to check performance (performance regression tests)

Testing and CI Martin Lüders 4 / 12



Motivation Continuous Integration Tests Remarks

Regression testing

The ”easy” part:

Assume the code is correct at some point.

Make sure future developments don’t break it!

Regression testing:

set up calculation which tests new development

record reference values (assumed to be ”correct”)

automatically test changes to the code against these reference values.

Tests should run on different computers and with different compilers

Tests should probe all parts of the code

Tests should run in a reasonable time

Tests to check performance (performance regression tests)

Testing and CI Martin Lüders 4 / 12



Motivation Continuous Integration Tests Remarks

Regression testing

The ”easy” part:

Assume the code is correct at some point.

Make sure future developments don’t break it!

Regression testing:

set up calculation which tests new development

record reference values (assumed to be ”correct”)

automatically test changes to the code against these reference values.

Tests should run on different computers and with different compilers

Tests should probe all parts of the code

Tests should run in a reasonable time

Tests to check performance (performance regression tests)

Testing and CI Martin Lüders 4 / 12



Motivation Continuous Integration Tests Remarks

Regression testing

The ”easy” part:

Assume the code is correct at some point.

Make sure future developments don’t break it!

Regression testing:

set up calculation which tests new development

record reference values (assumed to be ”correct”)

automatically test changes to the code against these reference values.

Tests should run on different computers and with different compilers

Tests should probe all parts of the code

Tests should run in a reasonable time

Tests to check performance (performance regression tests)

Testing and CI Martin Lüders 4 / 12



Motivation Continuous Integration Tests Remarks

Regression testing

The ”easy” part:

Assume the code is correct at some point.

Make sure future developments don’t break it!

Regression testing:

set up calculation which tests new development

record reference values (assumed to be ”correct”)

automatically test changes to the code against these reference values.

Tests should run on different computers and with different compilers

Tests should probe all parts of the code

Tests should run in a reasonable time

Tests to check performance (performance regression tests)

Testing and CI Martin Lüders 4 / 12



Motivation Continuous Integration Tests Remarks

Regression testing

The ”easy” part:

Assume the code is correct at some point.

Make sure future developments don’t break it!

Regression testing:

set up calculation which tests new development

record reference values (assumed to be ”correct”)

automatically test changes to the code against these reference values.

Tests should run on different computers and with different compilers

Tests should probe all parts of the code

Tests should run in a reasonable time

Tests to check performance (performance regression tests)

Testing and CI Martin Lüders 4 / 12



Motivation Continuous Integration Tests Remarks

Regression testing

The ”easy” part:

Assume the code is correct at some point.

Make sure future developments don’t break it!

Regression testing:

set up calculation which tests new development

record reference values (assumed to be ”correct”)

automatically test changes to the code against these reference values.

Tests should run on different computers and with different compilers

Tests should probe all parts of the code

Tests should run in a reasonable time

Tests to check performance (performance regression tests)

Testing and CI Martin Lüders 4 / 12



Motivation Continuous Integration Tests Remarks

Regression testing

The ”easy” part:

Assume the code is correct at some point.

Make sure future developments don’t break it!

Regression testing:

set up calculation which tests new development

record reference values (assumed to be ”correct”)

automatically test changes to the code against these reference values.

Tests should run on different computers and with different compilers

Tests should probe all parts of the code

Tests should run in a reasonable time

Tests to check performance (performance regression tests)

Testing and CI Martin Lüders 4 / 12



Motivation Continuous Integration Tests Remarks

Regression testing

The ”easy” part:

Assume the code is correct at some point.

Make sure future developments don’t break it!

Regression testing:

set up calculation which tests new development

record reference values (assumed to be ”correct”)

automatically test changes to the code against these reference values.

Tests should run on different computers and with different compilers

Tests should probe all parts of the code

Tests should run in a reasonable time

Tests to check performance (performance regression tests)

Testing and CI Martin Lüders 4 / 12



Motivation Continuous Integration Tests Remarks

Continued Integration (CI)

Integrate this testing into the development workflow:

Tests should be automatically run when changes are done to the code
(develop branch)

Integrated into gitlab (so-called webhooks)

certain events (e.g. push, tag) can trigger external actions
push to develop or master: trigger buildbot
create tag: build distribution tarball, build web-pages

We use buildbot for triggering the test runs

We have a number of different computers to run the tests

Testing and CI Martin Lüders 5 / 12



Motivation Continuous Integration Tests Remarks

Continued Integration (CI)

Integrate this testing into the development workflow:

Tests should be automatically run when changes are done to the code
(develop branch)

Integrated into gitlab (so-called webhooks)

certain events (e.g. push, tag) can trigger external actions
push to develop or master: trigger buildbot
create tag: build distribution tarball, build web-pages

We use buildbot for triggering the test runs

We have a number of different computers to run the tests

Testing and CI Martin Lüders 5 / 12



Motivation Continuous Integration Tests Remarks

Continued Integration (CI)

Integrate this testing into the development workflow:

Tests should be automatically run when changes are done to the code
(develop branch)

Integrated into gitlab (so-called webhooks)

certain events (e.g. push, tag) can trigger external actions

push to develop or master: trigger buildbot
create tag: build distribution tarball, build web-pages

We use buildbot for triggering the test runs

We have a number of different computers to run the tests

Testing and CI Martin Lüders 5 / 12



Motivation Continuous Integration Tests Remarks

Continued Integration (CI)

Integrate this testing into the development workflow:

Tests should be automatically run when changes are done to the code
(develop branch)

Integrated into gitlab (so-called webhooks)

certain events (e.g. push, tag) can trigger external actions
push to develop or master: trigger buildbot

create tag: build distribution tarball, build web-pages

We use buildbot for triggering the test runs

We have a number of different computers to run the tests

Testing and CI Martin Lüders 5 / 12



Motivation Continuous Integration Tests Remarks

Continued Integration (CI)

Integrate this testing into the development workflow:

Tests should be automatically run when changes are done to the code
(develop branch)

Integrated into gitlab (so-called webhooks)

certain events (e.g. push, tag) can trigger external actions
push to develop or master: trigger buildbot
create tag: build distribution tarball, build web-pages

We use buildbot for triggering the test runs

We have a number of different computers to run the tests

Testing and CI Martin Lüders 5 / 12



Motivation Continuous Integration Tests Remarks

Continued Integration (CI)

Integrate this testing into the development workflow:

Tests should be automatically run when changes are done to the code
(develop branch)

Integrated into gitlab (so-called webhooks)

certain events (e.g. push, tag) can trigger external actions
push to develop or master: trigger buildbot
create tag: build distribution tarball, build web-pages

We use buildbot for triggering the test runs

We have a number of different computers to run the tests

Testing and CI Martin Lüders 5 / 12



Motivation Continuous Integration Tests Remarks

Continued Integration (CI)

Integrate this testing into the development workflow:

Tests should be automatically run when changes are done to the code
(develop branch)

Integrated into gitlab (so-called webhooks)

certain events (e.g. push, tag) can trigger external actions
push to develop or master: trigger buildbot
create tag: build distribution tarball, build web-pages

We use buildbot for triggering the test runs

We have a number of different computers to run the tests

Testing and CI Martin Lüders 5 / 12



Motivation Continuous Integration Tests Remarks

Continued Integration (CI)

Buildbot:

master

receives requests from gitlab (or web interface)
master configuration contains all details
(e.g. list of workers, schedules, build and run options)
sends tasks to the workers
report back to gitlab

workers

run tests: (git clone, configure and compile, run custom test script)
report results to master

Testing and CI Martin Lüders 6 / 12



Motivation Continuous Integration Tests Remarks

Continued Integration (CI)

Buildbot:

master

receives requests from gitlab (or web interface)

master configuration contains all details
(e.g. list of workers, schedules, build and run options)
sends tasks to the workers
report back to gitlab

workers

run tests: (git clone, configure and compile, run custom test script)
report results to master

Testing and CI Martin Lüders 6 / 12



Motivation Continuous Integration Tests Remarks

Continued Integration (CI)

Buildbot:

master

receives requests from gitlab (or web interface)
master configuration contains all details
(e.g. list of workers, schedules, build and run options)

sends tasks to the workers
report back to gitlab

workers

run tests: (git clone, configure and compile, run custom test script)
report results to master

Testing and CI Martin Lüders 6 / 12



Motivation Continuous Integration Tests Remarks

Continued Integration (CI)

Buildbot:

master

receives requests from gitlab (or web interface)
master configuration contains all details
(e.g. list of workers, schedules, build and run options)
sends tasks to the workers

report back to gitlab

workers

run tests: (git clone, configure and compile, run custom test script)
report results to master

Testing and CI Martin Lüders 6 / 12



Motivation Continuous Integration Tests Remarks

Continued Integration (CI)

Buildbot:

master

receives requests from gitlab (or web interface)
master configuration contains all details
(e.g. list of workers, schedules, build and run options)
sends tasks to the workers
report back to gitlab

workers

run tests: (git clone, configure and compile, run custom test script)
report results to master

Testing and CI Martin Lüders 6 / 12



Motivation Continuous Integration Tests Remarks

Continued Integration (CI)

Buildbot:

master

receives requests from gitlab (or web interface)
master configuration contains all details
(e.g. list of workers, schedules, build and run options)
sends tasks to the workers
report back to gitlab

workers

run tests: (git clone, configure and compile, run custom test script)
report results to master

Testing and CI Martin Lüders 6 / 12



Motivation Continuous Integration Tests Remarks

Continued Integration (CI)

Buildbot:

master

receives requests from gitlab (or web interface)
master configuration contains all details
(e.g. list of workers, schedules, build and run options)
sends tasks to the workers
report back to gitlab

workers

run tests: (git clone, configure and compile, run custom test script)

report results to master

Testing and CI Martin Lüders 6 / 12



Motivation Continuous Integration Tests Remarks

Continued Integration (CI)

Buildbot:

master

receives requests from gitlab (or web interface)
master configuration contains all details
(e.g. list of workers, schedules, build and run options)
sends tasks to the workers
report back to gitlab

workers

run tests: (git clone, configure and compile, run custom test script)
report results to master

Testing and CI Martin Lüders 6 / 12



Motivation Continuous Integration Tests Remarks

Our test farm

Range of machines:

intel x86

PPC

intel x86 + NVidia RTX2080 (2 CPU + 10 GPU)

Range of ’toolchains’ (i.e. compilers + libraries):

foss (gnu compilers), fosscuda

intel, intelcuda

different combinations with MPI and OpenMP

several versions of each toolchain

different optimizations and set of libraries

valgrind

Testing and CI Martin Lüders 7 / 12



Motivation Continuous Integration Tests Remarks

Our test farm

Range of machines:

intel x86

PPC

intel x86 + NVidia RTX2080 (2 CPU + 10 GPU)

Range of ’toolchains’ (i.e. compilers + libraries):

foss (gnu compilers), fosscuda

intel, intelcuda

different combinations with MPI and OpenMP

several versions of each toolchain

different optimizations and set of libraries

valgrind

Testing and CI Martin Lüders 7 / 12



Motivation Continuous Integration Tests Remarks

The Buildbot GUI

Main views:

Waterfall
Grid
Console

Pipeline view: Details of the test runs. (also ”Rebuild”)

Details of the run: Look here for error messages
Rebuild button

Other tabs: builders, pending buildrequests, workers

Builders: list of pipelines
Pending buildrequests: look here to see how long you might have to
wait.
Workers: list of machines: might indicate is a machine is ’ill’

Testing and CI Martin Lüders 8 / 12



Motivation Continuous Integration Tests Remarks

Test scripts

Test script (run by buildbot, or locally):

custom PERL and bash scripts

allows for simple if constructions in test files

schedules tests for multi-processor workers

handles parallelism

make check or make check-short

oct-run testsuite.sh: run groups of tests and schedule the tests

oct-run regression test.pl: run individual tests

Testfiles live in: testsuite/

Testing and CI Martin Lüders 9 / 12



Motivation Continuous Integration Tests Remarks

Test scripts

Test script (run by buildbot, or locally):

custom PERL and bash scripts

allows for simple if constructions in test files

schedules tests for multi-processor workers

handles parallelism

make check or make check-short

oct-run testsuite.sh: run groups of tests and schedule the tests

oct-run regression test.pl: run individual tests

Testfiles live in: testsuite/

Testing and CI Martin Lüders 9 / 12



Motivation Continuous Integration Tests Remarks

Test scripts

Test script (run by buildbot, or locally):

custom PERL and bash scripts

allows for simple if constructions in test files

schedules tests for multi-processor workers

handles parallelism

make check or make check-short

oct-run testsuite.sh: run groups of tests and schedule the tests

oct-run regression test.pl: run individual tests

Testfiles live in: testsuite/

Testing and CI Martin Lüders 9 / 12



Motivation Continuous Integration Tests Remarks

Test files

Example test file:
Test : Crank-Nicolson (SPARSKIT)

Program : octopus

TestGroups : short-run, real_time

Enabled : Yes

Processors : 1

Input : 16-sparskit.01-gs.inp

match ; SCF convergence ; GREPCOUNT(static/info, ’SCF converged’) ; 1

match ; Initial energy ; GREPFIELD(static/info, ’Total =’, 3) ; -10.60764719

Processors : 4

Input : 16-sparskit.02-kick.inp

if (available sparskit); then

match ; Energy [step 1] ; LINEFIELD(td.general/energy, -21, 3) ; -1.058576638440e+01

match ; Energy [step 5] ; LINEFIELD(td.general/energy, -16, 3) ; -1.043027231981e+01

match ; Energy [step 10] ; LINEFIELD(td.general/energy, -11, 3) ; -1.043026650500e+01

match ; Energy [step 15] ; LINEFIELD(td.general/energy, -6, 3) ; -1.043026483491e+01

match ; Energy [step 20] ; LINEFIELD(td.general/energy, -1, 3) ; -1.043026489604e+01

match ; Dipole [step 1] ; LINEFIELD(td.general/multipoles, -21, 4) ; 6.723772397619e-13

match ; Dipole [step 5] ; LINEFIELD(td.general/multipoles, -16, 4) ; -7.295810087049e-01

match ; Dipole [step 10] ; LINEFIELD(td.general/multipoles, -11, 4) ; -1.339402779435e+00

match ; Dipole [step 15] ; LINEFIELD(td.general/multipoles, -6, 4) ; -1.833991374772e+00

match ; Dipole [step 20] ; LINEFIELD(td.general/multipoles, -1, 4) ; -2.215415201335e+00

else

match; Error missing SPARSKIT; GREPCOUNT(err, ’recompile with SPARSKIT support’) ; 1

endif

Testing and CI Martin Lüders 10 / 12



Motivation Continuous Integration Tests Remarks

Writing tests

Having new features tested is essential.
Merge requests will not be accepted without providing a test!

Guidelines:

all features should be tested, but not necessarily in one test

also test error messages

make calculations as short as possible

test several relevant quantities (matches are free)

if possible, provide a unit test (see main/test.F90)

Testing and CI Martin Lüders 11 / 12



Motivation Continuous Integration Tests Remarks

Writing tests

Having new features tested is essential.
Merge requests will not be accepted without providing a test!

Guidelines:

all features should be tested, but not necessarily in one test

also test error messages

make calculations as short as possible

test several relevant quantities (matches are free)

if possible, provide a unit test (see main/test.F90)

Testing and CI Martin Lüders 11 / 12



Motivation Continuous Integration Tests Remarks

Some remarks

pushing test results back to gitlab sometimes fails
−→ when in doubt, check on the buildbot GUI.

We have some random failures

Numerical noise (e.g. due to parallelization): increase tolerance of test
Possible bugs? We don’t know yet.
Try to rebuild that pipeline.
If the failure remains, it’s probably a bug!
Use the testsuite app to find systematic deviations.

Testing and CI Martin Lüders 12 / 12



Motivation Continuous Integration Tests Remarks

Some remarks

pushing test results back to gitlab sometimes fails
−→ when in doubt, check on the buildbot GUI.

We have some random failures

Numerical noise (e.g. due to parallelization): increase tolerance of test
Possible bugs? We don’t know yet.
Try to rebuild that pipeline.
If the failure remains, it’s probably a bug!
Use the testsuite app to find systematic deviations.

Testing and CI Martin Lüders 12 / 12


	Motivation
	Continuous Integration
	Tests
	Remarks

