
Developing Octopus:
an Introduction

Micael Oliveira

Octopus Course 2021, MPSD Hamburg

1 / 41

Scientific Software Development

Unique challenges:

Translating science into code

Need to understand the science

Scientist are often not trained in software engineering

Software performance is often important

Many codes need to be enabled for high-performance computing:

Parallelism (MPI, OpenMP, etc)
GPU’s
Complex hardware
Unusual architectures

2 / 41

Scientific Software Development

After a while, cost of maintenance becomes larger than cost of adding
new features

Software engineering good practices are essential!

3 / 41

Some best practices

Code is the enemy: it can have bugs and it needs maintenance

Do not reinvent the wheel: reuse code

Write code that is easy to read and that is mostly self-documented

Comments about why the code does something are very important

Test your code

“Premature optimization is the root of all evil”

4 / 41

Electronic structure “monolithic” and modular coding
paradigms

M. J. T. Oliveira, N. Papior, Y. Pouillon, V. Blum, E. Artacho et al, J. Chem. Phys. 153, 024117 (2020)

5 / 41

Octopus: Dissecting the Animal

DFT and TDDFT code

Some other theories implemented (Hartree-Fock, RDMFT, etc)

Main focus on excited-state properties

Real-space representation

Norm-conserving pseudopotentials

6 / 41

Octopus: Dissecting the Animal

Project formaly started in 2001

Free-software (GPL)

Writen mainly in Fortran 2003

Fortran sources are preprocessed with cpp

Some C, C++, perl and Bison (use the right tool for the job!)

CUDA/OpenCL for GPU support

Currently over 250,000 lines of code

7 / 41

Octopus: Dissecting the Animal

8 / 41

Octopus: a code for developers

Not the fastest code around for most problems, but still quite fast

Real space grid:

Good compromise between plane-waves and localized basis-sets
Can be as accurate as any other basis
Can easily describe excited states
Simple and intuitive

Lots of “exotic” features (e.g., model systems, arbitrary dimensions,
etc)

A framework to implement, develop and test new ideas

9 / 41

octopus-code.org

Wiki based website

A new website is under construction
octopus-code.org/new-site/develop

Ressources for users:

Code download
Compilation instructions (partially outdated)
Manual (outdated)
Tutorials
Input variable reference
...

Dedicated section for developers

10 / 41

octopus-code.org
octopus-code.org/new-site/develop

octopus-code.org/wiki/Developers

“Starting to develop” guide (must read!)

Workflow guide (must read!)

Coding standards

Input variable reference (development version)

Some code documentation (partially outdated)

...

11 / 41

octopus-code.org/wiki/Developers

Git and GitLab

Octopus uses git as version control system

GitLab provides several important things:

Hosts main repository
Merge requests
Issues

12 / 41

Regression test suite and the Buildbot

Octopus includes a large collection of regression tests

Test suite covers ∼ 65% of the code

Continuous integration (CI) using Buildbot

Buildbot is interfaced with GitLab

13 / 41

Build system

Compilation and configuration is based on autotools

Configure script is generated from configure.ac

Makefiles are generated from Makefile.am files in each directory

To generate the configure scripts run autoreconf -i

VPATH builds are supported and suggested.

14 / 41

External libraries

We do not like to reinvent the wheel

We like to share code

Octopus uses many external libraries, either optional or mandatory:

BLAS/LAPACK
FFTW
MPI
GSL
Libxc
Libvdwxc
PSolver
ELPA
...

15 / 41

Coding style

Set of rules and guidelines for writing code

Deals with indentation, white spaces, naming conventions, etc

Makes the code easier to read and understand

Ideally the code should read like plain English

Bad

i f (space%p e r i o d i c d im > 0) then
. . .

end i f

Good

i f (space%i s p e r i o d i c ()) then
. . .

end i f

Helps avoiding some errors

16 / 41

Octopus coding standards

https://octopus-code.org/wiki/Developers:Coding_standards

17 / 41

https://octopus-code.org/wiki/Developers:Coding_standards

Octopus coding standards

Some examples:

Two space indentation

No single letter variable names

Module names end with oct m, derived types with t

All functions should go inside modules.

All modules must have private and implicit none statements

Intents for subroutine arguments are mandatory

...

18 / 41

Preprocessor

Changes the source before compilation

We use the C preprocessor:

Standard
Widely available
Requires some tricks to work with Fortran code
Imposes (few) limitations on Fortran code

Several macros generated when running configure script

Conditional compilation:

#i f d e f HAVE MPI
. . .

#e l s e
. . .

#e n d i f

Templating to generate same subroutine with different data types
(float/complex/integers, scalar/array, etc)

19 / 41

Preprocessor: some useful Octopus specific macros

SAFE ALLOCATE()

Calls allocate

Returns error on failure
Counts allocated memory for profiling

PUSH SUB() / POP SUB()

Generates a call stack used for debugging

MAX DIM

Maximum dimension the code can run
Deprecated

FLOAT, CMPLX

Allow to change the real and complex types at compile time
Was introduced to allow compilation in single precision
Not really useful anymore; will likely be removed

20 / 41

Preprocessor: “templating”

inc.F90 files contain code that is independent of data type

Files are included with the preprocessor in the following way:

#i n c l u d e "undef.F90"

#i n c l u d e "real.F90"

#i n c l u d e "my_function_inc.F90"

#i n c l u d e "undef.F90"

#i n c l u d e "complex.F90"

#i n c l u d e "my_function_inc.F90"

. . .

Several macros are available to use in the inc.F90 files

21 / 41

Preprocessor: “templating”

Function definition:
f u n c t i o n X(my func t i on) (arg1 , a rg2) r e s u l t (r e s))

R TYPE , i n t e n t (i n) : : a rg1
R TYPE , i n t e n t (i n) : : a rg2
R TYPE , i n t e n t (out) : : r e s

. . .
end f u n c t i o n X(my func t i on)

Function call:
FLOAT : : da1 , da2 , d r e s
CMPLX : : za1 , za2 , z r e s

d r e s = dmy func t i on (da1 , da2)
z r e s = zmy func t i on (za1 , za2)

X(...): prepends “type-prefix” (e.g., d or z) to subroutine name

R TYPE: templated type in function definition

Other data types related macros available: R TOTYPE(), R TOPREC(),
R CONJ(), etc

22 / 41

Preprocessor: “templating”

real.F90

. . .
#d e f i n e R TYPE FLOAT
#d e f i n e R BASE FLOAT
#d e f i n e R DOUBLE r e a l (8)
#d e f i n e R MPITYPE MPI FLOAT
#d e f i n e R TYPE VAL TYPE FLOAT
#d e f i n e R TYPE CL ’RTYPE_DOUBLE ’

#de f i n e R TYPE IOBINARY TYPE DOUBLE
#d e f i n e R TOTYPE(x) r e a l (x , REAL PRECISION)
#d e f i n e R TOPREC(x) r e a l (x , REAL PRECISION)

#d e f i n e R CONJ(x) (x)
#d e f i n e R REAL(x) (x)
#d e f i n e R AIMAG(x) (M ZERO)

#d e f i n e X(x) d ## x
. . .

23 / 41

Preprocessor: “templating”

complex.F90

. . .
#d e f i n e R TYPE CMPLX
#d e f i n e R BASE FLOAT
#d e f i n e R DOUBLE complex (8)
#d e f i n e R MPITYPE MPI CMPLX
#d e f i n e R TYPE VAL TYPE CMPLX
#d e f i n e R TYPE CL ’RTYPE_COMPLEX ’

#de f i n e R TYPE IOBINARY TYPE DOUBLE COMPLEX
#d e f i n e R TOTYPE(x) cmplx (x , M ZERO, REAL PRECISION)
#d e f i n e R TOPREC(x) cmplx (r e a l (x) , aimag (x) , REAL PRECISION)

#d e f i n e R CONJ(x) con jg (x)
#d e f i n e R REAL(x) r e a l (x)
#d e f i n e R AIMAG(x) aimag (x)
. . .
#d e f i n e X(x) z ## x
. . .

24 / 41

Input file variables

Octopus uses a parser written in Bison

Input file is fully parsed at the beginning of the calculation:

i e r r = p a r s e i n i t (’exec/parser.log’ , mp i wor ld%rank)

exec/parser.log contains all the variables accessed during a
calculation

Input variables can be accessed anywhere in the code

Avoid reading each variable more than once

25 / 41

Input file variables

All parser interfaces are defined in the parser oct m module

Scalar variables are accessed with the parse variable function:

c a l l p a r s e v a r i a b l e (g loba l namespace , ’CalculationMode ’ , OPTION CALCULATIONMODE GS ,
i np ca l c mode)

Reading blocks requires to use a block t data type

Blocks must be “opened” and “closed”:

t ype (b l o c k t) : : b l k
. . .
i f (p a r s e b l o c k (namespace , ’ L s i z e ’ , b l k) == 0) then

! L s i z e i s s p e c i f i e d as a b l o ck
i f (p a r s e b l o c k c o l s (b lk , 0) < space%dim) then

c a l l m e s s a g e s i n p u t e r r o r (namespace , ’ L s i z e ’)
end i f

do i d i r = 1 , space%dim
c a l l p a r s e b l o c k f l o a t (b lk , 0 , i d i r − 1 , sb%l s i z e (i d i r) , u n i t s i n p%l e ng t h)
. . .

end do
c a l l p a r s e b l o c k e n d (b l k)
. . .

end i f

26 / 41

Input variables documentation

Variables are documented in the source code, just before where they
are accessed

Documentation is parsed by a script that generates HTML and plain
text output

Example:

!%Va r i a b l e Ca l cu l a t i onMode
!%Type i n t e g e r
!%De f au l t gs
!%Sec t i o n C a l c u l a t i o n Modes
!%De s c r i p t i o n
!% Dec ide s what k ind o f c a l c u l a t i o n i s to be per fo rmed .
!%Option gs 01
!% Ca l c u l a t i o n o f the ground s t a t e .
!%Option unocc 02
!% Ca l c u l a t i o n o f unoccup i ed / v i r t u a l KS s t a t e s . Can a l s o be used f o r a non−s e l f−c o n s i s t e n t
!% c a l c u l a t i o n o f s t a t e s at a r b i t r a r y k−po i n t s , i f <t t>d e n s i t y . obf</t t> from <t t>gs</t t>
!% i s p r o v i d ed i n the <t t>r e s t a r t /gs</t t> d i r e c t o r y .
!% . . .
!%End

Options defined in the documentation can be used in the input file

27 / 41

A look at the future: the multi-system framework

After 20 years of development, the current code structure is starting
to show its limits

New developments are becoming more difficult

Fortran 2003 introduces lots of new OOP features

Several “multi-system” features were very hard to implement and
maintain:

Subsystem DFT
Maxwell solver
Electronic transport
...

In 2019 it was decided to introduce a new framework and rewrite large
portions of Octopus.

28 / 41

What problem are we trying to solve?

29 / 41

What problem are we trying to solve?

We want to solve a system of coupled differential equations

How to handle arbitrary numbers of equations?

How to add/remove equations “on-the-fly’?

How to activate/deactivate couplings “on-the-fly”?

30 / 41

How to code this?

The way NOT to do it:

i f (system A%i s e l e c t r o n s) then
. . .
e l s e i f (system A%i s i o n s) then
. . .
end i f

i f (system A%ha s i n t e r a c t i o n X w i t h s y s t em B) then
. . .
end i f
i f (system B%ha s i n t e r a c t i o n X w i t h s y s t em A) then
. . .
end i f
i f ((system A%ha s i n t e r a c t i o n Y w i t h s y s t em B) then
. . .
end i f

31 / 41

Multi-system framework: Key features

New framework to handle calculations of coupled systems

Allows to define many physical systems simultaneously (electrons,
ions, lasers, Maxwell, DFTB+, PCM, etc)

Systems are coupled through interactions (eElectron-ion, Lorentz
force, dipole coupling, etc)

Calculations modes are now “algorithms”: a set of state machine
atomic operations

The code automatically handles all the interactions/systems

New parallelization level: systems

Current efforts focused on porting SCF and time propagation to new
framework

32 / 41

Multi-System Framework: Design

Focus on extendability and maintainability

Adding new systems, interactions and algorithms should be as simple
as possible

Flexible algorithms:

Time-propagation using different propagators and time-steps for each
system
Nested SCF loops

Framework is independent of existing systems and interactions

Systems do not know about each other directly, instead they know
interactions

Heavy use of object-oriented programming

33 / 41

Test environment: celestial dynamics

System of Sun, Earth, and Moon as point particles interacting with
gravity

Numerical integration of orbits with different algorithms

Fast turnover for code development

34 / 41

Test environment: celestial dynamics

inp
CalculationMode = td

ExperimentalFeatures = yes

%Systems

"Sun" | classical_particle

"Earth" | classical_particle

"Moon" | classical_particle

%

%Interactions

gravity | all_partners

%

InteractionTiming = timing_retarded

#Initial conditions are taken from https://ssd.jpl.nasa.gov/horizons.cgi#top.

initial condition at time:

2458938.500000000 = A.D. 2020-Mar-30 00:00:00.0000 TDB

Earth.ParticleMass = 5.97237e24

%Earth.ParticleInitialPosition

-147364661998.16476 | -24608859261.610123 | 1665165.2801353487

%

%Earth.ParticleInitialVelocity

4431.136612956525 | -29497.611635546345 | 0.343475566161544

%

35 / 41

Test environment: celestial dynamics

inp (cont.)
Moon.ParticleMass = 7.342e22

%Moon.ParticleInitialPosition

-147236396732.81906 | -24234200672.857853 | -11062799.286082389

%

%Moon.ParticleInitialVelocity

3484.6397238565924 | -29221.007409082802 | 82.53526338876684

%

Sun.ParticleMass = 1.98855e30

%Sun.ParticleInitialPosition

0.0 | 0.0 | 0.0

%

%Sun.ParticleInitialVelocity

0.0 | 0.0 | 0.0

%

TDSystemPropagator = verlet

sampling = 24 # Time-steps per day

days = 3

seconds_per_day = 24*3600

Sun.TDTimeStep = seconds_per_day/sampling

Earth.TDTimeStep = seconds_per_day/sampling/2

Moon.TDTimeStep = seconds_per_day/sampling/4

TDPropagationTime = days*seconds_per_day

36 / 41

New multi-system syntax

Systems block
%Systems

"Sun" | classical_particle

"Earth" | classical_particle

"Moon" | classical_particle

%

Nested systems
%Systems

"Sun" | classical_particle

"Earth" | multisystem

%

%Earth.Systems

"Terra" | classical_particle

"Luna" | classical_particle

%

37 / 41

New multi-system syntax

Namespaces
Sun.ParticleMass = 1.98855e30

Earth.Terra.ParticleMass = 5.97237e24

Luna.ParticleMass = 7.342e22

Interactions
%Interactions

gravity | all_partners

coulomb_force | no_partners

%

%SystemA.Interactions

gravity | no_partners

coulomb_force | all_partners

%

%SystemB.Interactions

gravity | only_partners | "SystemA"

coulomb_force | all_except | "SystemC"

%

38 / 41

Velocity Verlet

1 Update positions

x(t + ∆t) = x(t) + x(t)∆t +
1

2
a(t)∆t2

2 Update interactions with all partners (compute F (x(t + ∆t)))

3 Compute acceleration a(t + ∆t)

4 Compute velocity

v(t + ∆t) = v(t) +
1

2
(a(t) + a(t + ∆t))∆t

39 / 41

Visualizing the multi-system time-stepping algorithm

https://octopus-code.org/new-site/develop/developers/code_

documentation/propagators/custom_diagram/

40 / 41

https://octopus-code.org/new-site/develop/developers/code_documentation/propagators/custom_diagram/
https://octopus-code.org/new-site/develop/developers/code_documentation/propagators/custom_diagram/

Celestial orbits

41 / 41

